150 SUBROUTINE dgeqrf ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
157 INTEGER INFO, LDA, LWORK, M,
160 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
167 INTEGER I, IB, IINFO, , J, K, LWKOPT, NB,
168 $ NBMIN, NX, LBWORK, NT, LLWORK
179 EXTERNAL ilaenv, sceil
188 nb = ilaenv( 1,
'DGEQRF',
' ', m, n, -1, -1 )
190 IF( nb.GT.1 .AND. nb.LT.k )
THEN
194 nx =
max( 0, ilaenv( 3,
'DGEQRF',
' ', m, n, -1, -1 ) )
207 nt = k-sceil(real(k-nx)/real(nb))*nb
212 llwork =
max(
max((n-m)*k, (n-m)*nb),
max(k*nb, nb*nb))
213 llwork = sceil(real(llwork)/real(nb))
221 lwkopt = (lbwork+llwork)*nb
222 work( 1 ) = (lwkopt+nt*nt)
226 lbwork = sceil(real(k)/real(nb))*nb
227 lwkopt = (lbwork+llwork-nb)*nb
235 lquery = ( lwork.EQ.-1 )
238 ELSE IF( n.LT.0 )
THEN
240 ELSE IF( lda.LT.
max( 1, m ) )
THEN
242 ELSE IF( lwork.LT.
max( 1, n ) .AND. .NOT.lquery )
THEN
246 CALL xerbla(
'DGEQRF', -info )
248 ELSE IF( lquery )
THEN
259 IF( nb.GT.1 .AND. nb.LT.k )
THEN
266 iws = (lbwork+llwork-nb)*nb
268 iws = (lbwork+llwork)*nb+nt*nt
271 IF( lwork.LT.iws )
THEN
277 nb = lwork / (llwork+(lbwork-nb))
279 nb = (lwork-nt*nt)/(lbwork+llwork)
282 nbmin =
max( 2, ilaenv( 2,
'DGEQRF',
' ', m, n, -1,
288 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
292 DO 10 i = 1, k - nx, nb
293 ib =
min( k-i+1, nb )
297 DO 20 j = 1, i - nb, nb
301 CALL dlarfb(
'Left',
'Transpose',
'Forward',
302 $
'Columnwise', m-j+1, ib, nb,
303 $ a( j, j ), lda, work(j), lbwork,
304 $ a( j, i ), lda, work(lbwork*nb+nt*nt+1),
312 CALL dgeqr2( m-i+1, ib, a( i, i ), lda, tau( i ),
313 $ work(lbwork*nb+nt*nt+1), iinfo )
320 CALL dlarft(
'Forward',
'Columnwise', m-i+1, ib,
321 $ a( i, i ), lda, tau( i ),
336 DO 30 j = 1, i - nb, nb
340 CALL dlarfb(
'Left',
'Transpose', 'forward
',
341 $ 'columnwise
', M-J+1, K-I+1, NB,
342 $ A( J, J ), LDA, WORK(J), LBWORK,
343 $ A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
347 CALL DGEQR2( M-I+1, K-I+1, A( I, I ), LDA, TAU( I ),
348 $ WORK(LBWORK*NB+NT*NT+1),IINFO )
354 CALL DGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ),
364.LT..AND..NE.
IF ( MN I1) THEN
369.LE.
IF ( NT NB ) THEN
370 CALL DLARFT( 'forward
', 'columnwise
', M-I+1, K-I+1,
371 $ A( I, I ), LDA, TAU( I ), WORK(I), LBWORK )
373 CALL DLARFT( 'forward
', 'columnwise
', M-I+1, K-I+1,
374 $ A( I, I ), LDA, TAU( I ),
375 $ WORK(LBWORK*NB+1), NT )
381 DO 40 J = 1, K-NX, NB
383 IB = MIN( K-J+1, NB )
385 CALL DLARFB( 'left
', 'transpose
', 'forward
',
386 $ 'columnwise
', M-J+1, N-M, IB,
387 $ A( J, J ), LDA, WORK(J), LBWORK,
388 $ A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
394 CALL DLARFB( 'left
', 'transpose
', 'forward
',
395 $ 'columnwise
', M-J+1, N-M, K-J+1,
396 $ A( J, J ), LDA, WORK(J), LBWORK,
397 $ A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
400 CALL DLARFB( 'left
', 'transpose
', 'forward
',
401 $ 'columnwise
', M-J+1, N-M, K-J+1,
404 $ NT, A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
subroutine dgeqr2(m, n, a, lda, tau, work, info)
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF VARIANT: left-looking Level 3 BLAS version of the algorithm.