OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
cheevx_2stage.f
Go to the documentation of this file.
1*> \brief <b> CHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
2*
3* @generated from zheevx_2stage.f, fortran z -> c, Sat Nov 5 23:18:09 2016
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download CHEEVX_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheevx_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheevx_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheevx_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE CHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
24* IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
25* LWORK, RWORK, IWORK, IFAIL, INFO )
26*
27* IMPLICIT NONE
28*
29* .. Scalar Arguments ..
30* CHARACTER JOBZ, RANGE, UPLO
31* INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
32* REAL ABSTOL, VL, VU
33* ..
34* .. Array Arguments ..
35* INTEGER IFAIL( * ), IWORK( * )
36* REAL RWORK( * ), W( * )
37* COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
38* ..
39*
40*
41*> \par Purpose:
42* =============
43*>
44*> \verbatim
45*>
46*> CHEEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
47*> of a complex Hermitian matrix A using the 2stage technique for
48*> the reduction to tridiagonal. Eigenvalues and eigenvectors can
49*> be selected by specifying either a range of values or a range of
50*> indices for the desired eigenvalues.
51*> \endverbatim
52*
53* Arguments:
54* ==========
55*
56*> \param[in] JOBZ
57*> \verbatim
58*> JOBZ is CHARACTER*1
59*> = 'N': Compute eigenvalues only;
60*> = 'V': Compute eigenvalues and eigenvectors.
61*> Not available in this release.
62*> \endverbatim
63*>
64*> \param[in] RANGE
65*> \verbatim
66*> RANGE is CHARACTER*1
67*> = 'A': all eigenvalues will be found.
68*> = 'V': all eigenvalues in the half-open interval (VL,VU]
69*> will be found.
70*> = 'I': the IL-th through IU-th eigenvalues will be found.
71*> \endverbatim
72*>
73*> \param[in] UPLO
74*> \verbatim
75*> UPLO is CHARACTER*1
76*> = 'U': Upper triangle of A is stored;
77*> = 'L': Lower triangle of A is stored.
78*> \endverbatim
79*>
80*> \param[in] N
81*> \verbatim
82*> N is INTEGER
83*> The order of the matrix A. N >= 0.
84*> \endverbatim
85*>
86*> \param[in,out] A
87*> \verbatim
88*> A is COMPLEX array, dimension (LDA, N)
89*> On entry, the Hermitian matrix A. If UPLO = 'U', the
90*> leading N-by-N upper triangular part of A contains the
91*> upper triangular part of the matrix A. If UPLO = 'L',
92*> the leading N-by-N lower triangular part of A contains
93*> the lower triangular part of the matrix A.
94*> On exit, the lower triangle (if UPLO='L') or the upper
95*> triangle (if UPLO='U') of A, including the diagonal, is
96*> destroyed.
97*> \endverbatim
98*>
99*> \param[in] LDA
100*> \verbatim
101*> LDA is INTEGER
102*> The leading dimension of the array A. LDA >= max(1,N).
103*> \endverbatim
104*>
105*> \param[in] VL
106*> \verbatim
107*> VL is REAL
108*> If RANGE='V', the lower bound of the interval to
109*> be searched for eigenvalues. VL < VU.
110*> Not referenced if RANGE = 'A' or 'I'.
111*> \endverbatim
112*>
113*> \param[in] VU
114*> \verbatim
115*> VU is REAL
116*> If RANGE='V', the upper bound of the interval to
117*> be searched for eigenvalues. VL < VU.
118*> Not referenced if RANGE = 'A' or 'I'.
119*> \endverbatim
120*>
121*> \param[in] IL
122*> \verbatim
123*> IL is INTEGER
124*> If RANGE='I', the index of the
125*> smallest eigenvalue to be returned.
126*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
127*> Not referenced if RANGE = 'A' or 'V'.
128*> \endverbatim
129*>
130*> \param[in] IU
131*> \verbatim
132*> IU is INTEGER
133*> If RANGE='I', the index of the
134*> largest eigenvalue to be returned.
135*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
136*> Not referenced if RANGE = 'A' or 'V'.
137*> \endverbatim
138*>
139*> \param[in] ABSTOL
140*> \verbatim
141*> ABSTOL is REAL
142*> The absolute error tolerance for the eigenvalues.
143*> An approximate eigenvalue is accepted as converged
144*> when it is determined to lie in an interval [a,b]
145*> of width less than or equal to
146*>
147*> ABSTOL + EPS * max( |a|,|b| ) ,
148*>
149*> where EPS is the machine precision. If ABSTOL is less than
150*> or equal to zero, then EPS*|T| will be used in its place,
151*> where |T| is the 1-norm of the tridiagonal matrix obtained
152*> by reducing A to tridiagonal form.
153*>
154*> Eigenvalues will be computed most accurately when ABSTOL is
155*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
156*> If this routine returns with INFO>0, indicating that some
157*> eigenvectors did not converge, try setting ABSTOL to
158*> 2*SLAMCH('S').
159*>
160*> See "Computing Small Singular Values of Bidiagonal Matrices
161*> with Guaranteed High Relative Accuracy," by Demmel and
162*> Kahan, LAPACK Working Note #3.
163*> \endverbatim
164*>
165*> \param[out] M
166*> \verbatim
167*> M is INTEGER
168*> The total number of eigenvalues found. 0 <= M <= N.
169*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
170*> \endverbatim
171*>
172*> \param[out] W
173*> \verbatim
174*> W is REAL array, dimension (N)
175*> On normal exit, the first M elements contain the selected
176*> eigenvalues in ascending order.
177*> \endverbatim
178*>
179*> \param[out] Z
180*> \verbatim
181*> Z is COMPLEX array, dimension (LDZ, max(1,M))
182*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
183*> contain the orthonormal eigenvectors of the matrix A
184*> corresponding to the selected eigenvalues, with the i-th
185*> column of Z holding the eigenvector associated with W(i).
186*> If an eigenvector fails to converge, then that column of Z
187*> contains the latest approximation to the eigenvector, and the
188*> index of the eigenvector is returned in IFAIL.
189*> If JOBZ = 'N', then Z is not referenced.
190*> Note: the user must ensure that at least max(1,M) columns are
191*> supplied in the array Z; if RANGE = 'V', the exact value of M
192*> is not known in advance and an upper bound must be used.
193*> \endverbatim
194*>
195*> \param[in] LDZ
196*> \verbatim
197*> LDZ is INTEGER
198*> The leading dimension of the array Z. LDZ >= 1, and if
199*> JOBZ = 'V', LDZ >= max(1,N).
200*> \endverbatim
201*>
202*> \param[out] WORK
203*> \verbatim
204*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
205*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
206*> \endverbatim
207*>
208*> \param[in] LWORK
209*> \verbatim
210*> LWORK is INTEGER
211*> The length of the array WORK. LWORK >= 1, when N <= 1;
212*> otherwise
213*> If JOBZ = 'N' and N > 1, LWORK must be queried.
214*> LWORK = MAX(1, 8*N, dimension) where
215*> dimension = max(stage1,stage2) + (KD+1)*N + N
216*> = N*KD + N*max(KD+1,FACTOPTNB)
217*> + max(2*KD*KD, KD*NTHREADS)
218*> + (KD+1)*N + N
219*> where KD is the blocking size of the reduction,
220*> FACTOPTNB is the blocking used by the QR or LQ
221*> algorithm, usually FACTOPTNB=128 is a good choice
222*> NTHREADS is the number of threads used when
223*> openMP compilation is enabled, otherwise =1.
224*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
225*>
226*> If LWORK = -1, then a workspace query is assumed; the routine
227*> only calculates the optimal size of the WORK array, returns
228*> this value as the first entry of the WORK array, and no error
229*> message related to LWORK is issued by XERBLA.
230*> \endverbatim
231*>
232*> \param[out] RWORK
233*> \verbatim
234*> RWORK is REAL array, dimension (7*N)
235*> \endverbatim
236*>
237*> \param[out] IWORK
238*> \verbatim
239*> IWORK is INTEGER array, dimension (5*N)
240*> \endverbatim
241*>
242*> \param[out] IFAIL
243*> \verbatim
244*> IFAIL is INTEGER array, dimension (N)
245*> If JOBZ = 'V', then if INFO = 0, the first M elements of
246*> IFAIL are zero. If INFO > 0, then IFAIL contains the
247*> indices of the eigenvectors that failed to converge.
248*> If JOBZ = 'N', then IFAIL is not referenced.
249*> \endverbatim
250*>
251*> \param[out] INFO
252*> \verbatim
253*> INFO is INTEGER
254*> = 0: successful exit
255*> < 0: if INFO = -i, the i-th argument had an illegal value
256*> > 0: if INFO = i, then i eigenvectors failed to converge.
257*> Their indices are stored in array IFAIL.
258*> \endverbatim
259*
260* Authors:
261* ========
262*
263*> \author Univ. of Tennessee
264*> \author Univ. of California Berkeley
265*> \author Univ. of Colorado Denver
266*> \author NAG Ltd.
267*
268*> \ingroup complexHEeigen
269*
270*> \par Further Details:
271* =====================
272*>
273*> \verbatim
274*>
275*> All details about the 2stage techniques are available in:
276*>
277*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
278*> Parallel reduction to condensed forms for symmetric eigenvalue problems
279*> using aggregated fine-grained and memory-aware kernels. In Proceedings
280*> of 2011 International Conference for High Performance Computing,
281*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
282*> Article 8 , 11 pages.
283*> http://doi.acm.org/10.1145/2063384.2063394
284*>
285*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
286*> An improved parallel singular value algorithm and its implementation
287*> for multicore hardware, In Proceedings of 2013 International Conference
288*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
289*> Denver, Colorado, USA, 2013.
290*> Article 90, 12 pages.
291*> http://doi.acm.org/10.1145/2503210.2503292
292*>
293*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
294*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
295*> calculations based on fine-grained memory aware tasks.
296*> International Journal of High Performance Computing Applications.
297*> Volume 28 Issue 2, Pages 196-209, May 2014.
298*> http://hpc.sagepub.com/content/28/2/196
299*>
300*> \endverbatim
301*
302* =====================================================================
303 SUBROUTINE cheevx_2stage( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
304 $ IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
305 $ LWORK, RWORK, IWORK, IFAIL, INFO )
306*
307 IMPLICIT NONE
308*
309* -- LAPACK driver routine --
310* -- LAPACK is a software package provided by Univ. of Tennessee, --
311* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
312*
313* .. Scalar Arguments ..
314 CHARACTER JOBZ, RANGE, UPLO
315 INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
316 REAL ABSTOL, VL, VU
317* ..
318* .. Array Arguments ..
319 INTEGER IFAIL( * ), IWORK( * )
320 REAL RWORK( * ), W( * )
321 COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
322* ..
323*
324* =====================================================================
325*
326* .. Parameters ..
327 REAL ZERO, ONE
328 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
329 COMPLEX CONE
330 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
331* ..
332* .. Local Scalars ..
333 LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
334 $ WANTZ
335 CHARACTER ORDER
336 INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
337 $ indisp, indiwk, indrwk, indtau, indwrk, iscale,
338 $ itmp1, j, jj, llwork,
339 $ nsplit, lwmin, lhtrd, lwtrd, kd, ib, indhous
340 REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
341 $ SIGMA, SMLNUM, TMP1, VLL, VUU
342* ..
343* .. External Functions ..
344 LOGICAL LSAME
345 INTEGER ILAENV2STAGE
346 REAL SLAMCH, CLANHE
347 EXTERNAL lsame, slamch, clanhe, ilaenv2stage
348* ..
349* .. External Subroutines ..
350 EXTERNAL scopy, sscal, sstebz, ssterf, xerbla, csscal,
353* ..
354* .. Intrinsic Functions ..
355 INTRINSIC real, max, min, sqrt
356* ..
357* .. Executable Statements ..
358*
359* Test the input parameters.
360*
361 lower = lsame( uplo, 'L' )
362 wantz = lsame( jobz, 'V' )
363 alleig = lsame( range, 'A' )
364 valeig = lsame( range, 'V' )
365 indeig = lsame( range, 'i' )
366.EQ. LQUERY = ( LWORK-1 )
367*
368 INFO = 0
369.NOT. IF( ( LSAME( JOBZ, 'n' ) ) ) THEN
370 INFO = -1
371.NOT..OR..OR. ELSE IF( ( ALLEIG VALEIG INDEIG ) ) THEN
372 INFO = -2
373.NOT..OR. ELSE IF( ( LOWER LSAME( UPLO, 'u' ) ) ) THEN
374 INFO = -3
375.LT. ELSE IF( N0 ) THEN
376 INFO = -4
377.LT. ELSE IF( LDAMAX( 1, N ) ) THEN
378 INFO = -6
379 ELSE
380 IF( VALEIG ) THEN
381.GT..AND..LE. IF( N0 VUVL )
382 $ INFO = -8
383 ELSE IF( INDEIG ) THEN
384.LT..OR..GT. IF( IL1 ILMAX( 1, N ) ) THEN
385 INFO = -9
386.LT..OR..GT. ELSE IF( IUMIN( N, IL ) IUN ) THEN
387 INFO = -10
388 END IF
389 END IF
390 END IF
391.EQ. IF( INFO0 ) THEN
392.LT..OR..AND..LT. IF( LDZ1 ( WANTZ LDZN ) ) THEN
393 INFO = -15
394 END IF
395 END IF
396*
397.EQ. IF( INFO0 ) THEN
398.LE. IF( N1 ) THEN
399 LWMIN = 1
400 WORK( 1 ) = LWMIN
401 ELSE
402 KD = ILAENV2STAGE( 1, 'chetrd_2stage', JOBZ,
403 $ N, -1, -1, -1 )
404 IB = ILAENV2STAGE( 2, 'chetrd_2stage', JOBZ,
405 $ N, KD, -1, -1 )
406 LHTRD = ILAENV2STAGE( 3, 'chetrd_2stage', JOBZ,
407 $ N, KD, IB, -1 )
408 LWTRD = ILAENV2STAGE( 4, 'chetrd_2stage', JOBZ,
409 $ N, KD, IB, -1 )
410 LWMIN = N + LHTRD + LWTRD
411 WORK( 1 ) = LWMIN
412 END IF
413*
414.LT..AND..NOT. IF( LWORKLWMIN LQUERY )
415 $ INFO = -17
416 END IF
417*
418.NE. IF( INFO0 ) THEN
419 CALL XERBLA( 'cheevx_2stage', -INFO )
420 RETURN
421 ELSE IF( LQUERY ) THEN
422 RETURN
423 END IF
424*
425* Quick return if possible
426*
427 M = 0
428.EQ. IF( N0 ) THEN
429 RETURN
430 END IF
431*
432.EQ. IF( N1 ) THEN
433.OR. IF( ALLEIG INDEIG ) THEN
434 M = 1
435 W( 1 ) = REAL( A( 1, 1 ) )
436 ELSE IF( VALEIG ) THEN
437.LT..AND..GE. IF( VLREAL( A( 1, 1 ) ) VUREAL( A( 1, 1 ) ) )
438 $ THEN
439 M = 1
440 W( 1 ) = REAL( A( 1, 1 ) )
441 END IF
442 END IF
443 IF( WANTZ )
444 $ Z( 1, 1 ) = CONE
445 RETURN
446 END IF
447*
448* Get machine constants.
449*
450 SAFMIN = SLAMCH( 'safe minimum' )
451 EPS = SLAMCH( 'precision' )
452 SMLNUM = SAFMIN / EPS
453 BIGNUM = ONE / SMLNUM
454 RMIN = SQRT( SMLNUM )
455 RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
456*
457* Scale matrix to allowable range, if necessary.
458*
459 ISCALE = 0
460 ABSTLL = ABSTOL
461 IF( VALEIG ) THEN
462 VLL = VL
463 VUU = VU
464 END IF
465 ANRM = CLANHE( 'm', UPLO, N, A, LDA, RWORK )
466.GT..AND..LT. IF( ANRMZERO ANRMRMIN ) THEN
467 ISCALE = 1
468 SIGMA = RMIN / ANRM
469.GT. ELSE IF( ANRMRMAX ) THEN
470 ISCALE = 1
471 SIGMA = RMAX / ANRM
472 END IF
473.EQ. IF( ISCALE1 ) THEN
474 IF( LOWER ) THEN
475 DO 10 J = 1, N
476 CALL CSSCAL( N-J+1, SIGMA, A( J, J ), 1 )
477 10 CONTINUE
478 ELSE
479 DO 20 J = 1, N
480 CALL CSSCAL( J, SIGMA, A( 1, J ), 1 )
481 20 CONTINUE
482 END IF
483.GT. IF( ABSTOL0 )
484 $ ABSTLL = ABSTOL*SIGMA
485 IF( VALEIG ) THEN
486 VLL = VL*SIGMA
487 VUU = VU*SIGMA
488 END IF
489 END IF
490*
491* Call CHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
492*
493 INDD = 1
494 INDE = INDD + N
495 INDRWK = INDE + N
496 INDTAU = 1
497 INDHOUS = INDTAU + N
498 INDWRK = INDHOUS + LHTRD
499 LLWORK = LWORK - INDWRK + 1
500*
501 CALL CHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDD ),
502 $ RWORK( INDE ), WORK( INDTAU ),
503 $ WORK( INDHOUS ), LHTRD, WORK( INDWRK ),
504 $ LLWORK, IINFO )
505*
506* If all eigenvalues are desired and ABSTOL is less than or equal to
507* zero, then call SSTERF or CUNGTR and CSTEQR. If this fails for
508* some eigenvalue, then try SSTEBZ.
509*
510 TEST = .FALSE.
511 IF( INDEIG ) THEN
512.EQ..AND..EQ. IF( IL1 IUN ) THEN
513 TEST = .TRUE.
514 END IF
515 END IF
516.OR..AND..LE. IF( ( ALLEIG TEST ) ( ABSTOLZERO ) ) THEN
517 CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
518 INDEE = INDRWK + 2*N
519.NOT. IF( WANTZ ) THEN
520 CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
521 CALL SSTERF( N, W, RWORK( INDEE ), INFO )
522 ELSE
523 CALL CLACPY( 'a', N, N, A, LDA, Z, LDZ )
524 CALL CUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
525 $ WORK( INDWRK ), LLWORK, IINFO )
526 CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
527 CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
528 $ RWORK( INDRWK ), INFO )
529.EQ. IF( INFO0 ) THEN
530 DO 30 I = 1, N
531 IFAIL( I ) = 0
532 30 CONTINUE
533 END IF
534 END IF
535.EQ. IF( INFO0 ) THEN
536 M = N
537 GO TO 40
538 END IF
539 INFO = 0
540 END IF
541*
542* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
543*
544 IF( WANTZ ) THEN
545 ORDER = 'b'
546 ELSE
547 ORDER = 'e'
548 END IF
549 INDIBL = 1
550 INDISP = INDIBL + N
551 INDIWK = INDISP + N
552 CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
553 $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
554 $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
555 $ IWORK( INDIWK ), INFO )
556*
557 IF( WANTZ ) THEN
558 CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
559 $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
560 $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
561*
562* Apply unitary matrix used in reduction to tridiagonal
563* form to eigenvectors returned by CSTEIN.
564*
565 CALL CUNMTR( 'l', UPLO, 'n', N, M, A, LDA, WORK( INDTAU ), Z,
566 $ LDZ, WORK( INDWRK ), LLWORK, IINFO )
567 END IF
568*
569* If matrix was scaled, then rescale eigenvalues appropriately.
570*
571 40 CONTINUE
572.EQ. IF( ISCALE1 ) THEN
573.EQ. IF( INFO0 ) THEN
574 IMAX = M
575 ELSE
576 IMAX = INFO - 1
577 END IF
578 CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
579 END IF
580*
581* If eigenvalues are not in order, then sort them, along with
582* eigenvectors.
583*
584 IF( WANTZ ) THEN
585 DO 60 J = 1, M - 1
586 I = 0
587 TMP1 = W( J )
588 DO 50 JJ = J + 1, M
589.LT. IF( W( JJ )TMP1 ) THEN
590 I = JJ
591 TMP1 = W( JJ )
592 END IF
593 50 CONTINUE
594*
595.NE. IF( I0 ) THEN
596 ITMP1 = IWORK( INDIBL+I-1 )
597 W( I ) = W( J )
598 IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
599 W( J ) = TMP1
600 IWORK( INDIBL+J-1 ) = ITMP1
601 CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
602.NE. IF( INFO0 ) THEN
603 ITMP1 = IFAIL( I )
604 IFAIL( I ) = IFAIL( J )
605 IFAIL( J ) = ITMP1
606 END IF
607 END IF
608 60 CONTINUE
609 END IF
610*
611* Set WORK(1) to optimal complex workspace size.
612*
613 WORK( 1 ) = LWMIN
614*
615 RETURN
616*
617* End of CHEEVX_2STAGE
618*
619 END
subroutine sstebz(range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
SSTEBZ
Definition sstebz.f:273
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:86
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine chetrd_2stage(vect, uplo, n, a, lda, d, e, tau, hous2, lhous2, work, lwork, info)
CHETRD_2STAGE
subroutine cheevx_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE mat...
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine cunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
CUNMTR
Definition cunmtr.f:172
subroutine cstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifail, info)
CSTEIN
Definition cstein.f:182
subroutine cungtr(uplo, n, a, lda, tau, work, lwork, info)
CUNGTR
Definition cungtr.f:123
subroutine csteqr(compz, n, d, e, z, ldz, work, info)
CSTEQR
Definition csteqr.f:132
subroutine cswap(n, cx, incx, cy, incy)
CSWAP
Definition cswap.f:81
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21