150 SUBROUTINE chptrd( UPLO, N, AP, D, E, TAU, INFO )
162 COMPLEX AP( * ), TAU( * )
168 COMPLEX ONE, ZERO, HALF
169 parameter( one = ( 1.0e+0, 0.0e+0 ),
170 $ zero = ( 0.0e+0, 0.0e+0 ),
171 $ half = ( 0.5e+0, 0.0e+0 ) )
175 INTEGER I, I1, I1I1, II
184 EXTERNAL lsame, cdotc
194 upper = lsame( uplo,
'U' )
195 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
197 ELSE IF( n.LT.0 )
THEN
201 CALL xerbla(
'CHPTRD', -info )
215 i1 = n*( n-1 ) / 2 + 1
216 ap( i1+n-1 ) = real( ap( i1+n-1 ) )
217 DO 10 i = n - 1, 1, -1
223 CALL clarfg( i, alpha, ap( i1 ), 1, taui )
224 e( i ) = real( alpha )
226 IF( taui.NE.zero )
THEN
234 CALL chpmv( uplo, i, taui, ap, ap( i1 ), 1, zero, tau,
239 alpha = -half*taui*cdotc( i, tau, 1, ap( i1 ), 1 )
240 CALL caxpy( i, alpha, ap( i1 ), 1, tau, 1 )
245 CALL chpr2( uplo, i, -one, ap( i1 ), 1, tau, 1, ap )
248 ap( i1+i-1 ) = e( i )
249 d( i+1 ) = real( ap( i1+i
253 d( 1 ) = real( ap( 1 ) )
260 ap( 1 ) = real( ap( 1 ) )
262 i1i1 = ii + n - i + 1
268 CALL clarfg( n-i, alpha, ap( ii+2 ), 1, taui )
279 CALL chpmv( uplo, n-i, taui, ap( i1i1 ), ap( ii+1 ), 1,
284 alpha = -half*taui*cdotc( n-i, tau( i ), 1, ap( ii+1 ),
286 CALL caxpy( n-i, alpha, ap( ii+1 ), 1, tau( i ), 1 )
291 CALL chpr2( uplo, n-i, -one, ap( ii+1 ), 1, tau( i ), 1,
296 d( i ) = real( ap( ii ) )
300 d( n ) = real( ap( ii ) )
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
subroutine chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
CHPMV