116 COMPLEX d( * ), dl( * ), du( * )
123 parameter( one = 1.0e+0, zero = 0.0e+0 )
127 REAL anorm, , sum, temp
147 anorm = abs( d( n ) )
149 IF( anorm.LT.abs( dl( i ) ) .OR.
sisnan( abs( dl( i ) ) ) )
151 IF( anorm.LT.abs( d( i ) ) .OR.
sisnan( abs( d( i ) ) ) )
153 IF( anorm.LT.abs( du( i ) ) .OR.
sisnan(abs( du( i ) ) ) )
161 ANORM = ABS( D( 1 ) )
163 ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
164 TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
165.LT..OR.
IF( ANORM TEMP SISNAN( TEMP ) ) ANORM = TEMP
167 TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
168.LT..OR.
IF( ANORM TEMP SISNAN( TEMP ) ) ANORM = TEMP
171 ELSE IF( LSAME( NORM, 'i
' ) ) THEN
176 ANORM = ABS( D( 1 ) )
178 ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
179 TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
180.LT..OR.
IF( ANORM TEMP SISNAN( TEMP ) ) ANORM = TEMP
182 TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
183.LT..OR.
IF( ANORM TEMP SISNAN( TEMP ) ) ANORM = TEMP
186 ELSE IF( ( LSAME( NORM, 'f.OR.
' ) ) ( LSAME( NORM, 'e
' ) ) ) THEN
192 CALL CLASSQ( N, D, 1, SCALE, SUM )
194 CALL CLASSQ( N-1, DL, 1, SCALE, SUM )
195 CALL CLASSQ( N-1, DU, 1, SCALE, SUM )
197 ANORM = SCALE*SQRT( SUM )
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
logical function sisnan(sin)
SISNAN tests input for NaN.
subroutine classq(n, x, incx, scl, sumsq)
CLASSQ updates a sum of squares represented in scaled form.
logical function lsame(ca, cb)
LSAME
real function clangt(norm, n, dl, d, du)
CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...