OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
clanhe.f
Go to the documentation of this file.
1*> \brief \b CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLANHE + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanhe.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanhe.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanhe.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* REAL FUNCTION CLANHE( NORM, UPLO, N, A, LDA, WORK )
22*
23* .. Scalar Arguments ..
24* CHARACTER NORM, UPLO
25* INTEGER LDA, N
26* ..
27* .. Array Arguments ..
28* REAL WORK( * )
29* COMPLEX A( LDA, * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> CLANHE returns the value of the one norm, or the Frobenius norm, or
39*> the infinity norm, or the element of largest absolute value of a
40*> complex hermitian matrix A.
41*> \endverbatim
42*>
43*> \return CLANHE
44*> \verbatim
45*>
46*> CLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
47*> (
48*> ( norm1(A), NORM = '1', 'O' or 'o'
49*> (
50*> ( normI(A), NORM = 'I' or 'i'
51*> (
52*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
53*>
54*> where norm1 denotes the one norm of a matrix (maximum column sum),
55*> normI denotes the infinity norm of a matrix (maximum row sum) and
56*> normF denotes the Frobenius norm of a matrix (square root of sum of
57*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
58*> \endverbatim
59*
60* Arguments:
61* ==========
62*
63*> \param[in] NORM
64*> \verbatim
65*> NORM is CHARACTER*1
66*> Specifies the value to be returned in CLANHE as described
67*> above.
68*> \endverbatim
69*>
70*> \param[in] UPLO
71*> \verbatim
72*> UPLO is CHARACTER*1
73*> Specifies whether the upper or lower triangular part of the
74*> hermitian matrix A is to be referenced.
75*> = 'U': Upper triangular part of A is referenced
76*> = 'L': Lower triangular part of A is referenced
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*> N is INTEGER
82*> The order of the matrix A. N >= 0. When N = 0, CLANHE is
83*> set to zero.
84*> \endverbatim
85*>
86*> \param[in] A
87*> \verbatim
88*> A is COMPLEX array, dimension (LDA,N)
89*> The hermitian matrix A. If UPLO = 'U', the leading n by n
90*> upper triangular part of A contains the upper triangular part
91*> of the matrix A, and the strictly lower triangular part of A
92*> is not referenced. If UPLO = 'L', the leading n by n lower
93*> triangular part of A contains the lower triangular part of
94*> the matrix A, and the strictly upper triangular part of A is
95*> not referenced. Note that the imaginary parts of the diagonal
96*> elements need not be set and are assumed to be zero.
97*> \endverbatim
98*>
99*> \param[in] LDA
100*> \verbatim
101*> LDA is INTEGER
102*> The leading dimension of the array A. LDA >= max(N,1).
103*> \endverbatim
104*>
105*> \param[out] WORK
106*> \verbatim
107*> WORK is REAL array, dimension (MAX(1,LWORK)),
108*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
109*> WORK is not referenced.
110*> \endverbatim
111*
112* Authors:
113* ========
114*
115*> \author Univ. of Tennessee
116*> \author Univ. of California Berkeley
117*> \author Univ. of Colorado Denver
118*> \author NAG Ltd.
119*
120*> \ingroup complexHEauxiliary
121*
122* =====================================================================
123 REAL function clanhe( norm, uplo, n, a, lda, work )
124*
125* -- LAPACK auxiliary routine --
126* -- LAPACK is a software package provided by Univ. of Tennessee, --
127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128*
129* .. Scalar Arguments ..
130 CHARACTER norm, uplo
131 INTEGER lda, n
132* ..
133* .. Array Arguments ..
134 REAL work( * )
135 COMPLEX a( lda, * )
136* ..
137*
138* =====================================================================
139*
140* .. Parameters ..
141 REAL one, zero
142 parameter( one = 1.0e+0, zero = 0.0e+0 )
143* ..
144* .. Local Scalars ..
145 INTEGER i, j
146 REAL absa, SCALE, sum, value
147* ..
148* .. External Functions ..
149 LOGICAL lsame, sisnan
150 EXTERNAL lsame, sisnan
151* ..
152* .. External Subroutines ..
153 EXTERNAL classq
154* ..
155* .. Intrinsic Functions ..
156 INTRINSIC abs, real, sqrt
157* ..
158* .. Executable Statements ..
159*
160 IF( n.EQ.0 ) THEN
161 VALUE = zero
162 ELSE IF( lsame( norm, 'm' ) ) THEN
163*
164* Find max(abs(A(i,j))).
165*
166 VALUE = ZERO
167 IF( LSAME( UPLO, 'u' ) ) THEN
168 DO 20 J = 1, N
169 DO 10 I = 1, J - 1
170 SUM = ABS( A( I, J ) )
171.LT..OR. IF( VALUE SUM SISNAN( SUM ) ) VALUE = SUM
172 10 CONTINUE
173 SUM = ABS( REAL( A( J, J ) ) )
174.LT..OR. IF( VALUE SUM SISNAN( SUM ) ) VALUE = SUM
175 20 CONTINUE
176 ELSE
177 DO 40 J = 1, N
178 SUM = ABS( REAL( A( J, J ) ) )
179.LT..OR. IF( VALUE SUM SISNAN( SUM ) ) VALUE = SUM
180 DO 30 I = J + 1, N
181 SUM = ABS( A( I, J ) )
182.LT..OR. IF( VALUE SUM SISNAN( SUM ) ) VALUE = SUM
183 30 CONTINUE
184 40 CONTINUE
185 END IF
186 ELSE IF( ( LSAME( NORM, 'i.OR.' ) ) ( LSAME( NORM, 'o.OR.' ) )
187.EQ. $ ( NORM'1' ) ) THEN
188*
189* Find normI(A) ( = norm1(A), since A is hermitian).
190*
191 VALUE = ZERO
192 IF( LSAME( UPLO, 'u' ) ) THEN
193 DO 60 J = 1, N
194 SUM = ZERO
195 DO 50 I = 1, J - 1
196 ABSA = ABS( A( I, J ) )
197 SUM = SUM + ABSA
198 WORK( I ) = WORK( I ) + ABSA
199 50 CONTINUE
200 WORK( J ) = SUM + ABS( REAL( A( J, J ) ) )
201 60 CONTINUE
202 DO 70 I = 1, N
203 SUM = WORK( I )
204.LT..OR. IF( VALUE SUM SISNAN( SUM ) ) VALUE = SUM
205 70 CONTINUE
206 ELSE
207 DO 80 I = 1, N
208 WORK( I ) = ZERO
209 80 CONTINUE
210 DO 100 J = 1, N
211 SUM = WORK( J ) + ABS( REAL( A( J, J ) ) )
212 DO 90 I = J + 1, N
213 ABSA = ABS( A( I, J ) )
214 SUM = SUM + ABSA
215 WORK( I ) = WORK( I ) + ABSA
216 90 CONTINUE
217.LT..OR. IF( VALUE SUM SISNAN( SUM ) ) VALUE = SUM
218 100 CONTINUE
219 END IF
220 ELSE IF( ( LSAME( NORM, 'f.OR.' ) ) ( LSAME( NORM, 'e' ) ) ) THEN
221*
222* Find normF(A).
223*
224 SCALE = ZERO
225 SUM = ONE
226 IF( LSAME( UPLO, 'u' ) ) THEN
227 DO 110 J = 2, N
228 CALL CLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
229 110 CONTINUE
230 ELSE
231 DO 120 J = 1, N - 1
232 CALL CLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
233 120 CONTINUE
234 END IF
235 SUM = 2*SUM
236 DO 130 I = 1, N
237.NE. IF( REAL( A( I, I ) )ZERO ) THEN
238 ABSA = ABS( REAL( A( I, I ) ) )
239.LT. IF( SCALEABSA ) THEN
240 SUM = ONE + SUM*( SCALE / ABSA )**2
241 SCALE = ABSA
242 ELSE
243 SUM = SUM + ( ABSA / SCALE )**2
244 END IF
245 END IF
246 130 CONTINUE
247 VALUE = SCALE*SQRT( SUM )
248 END IF
249*
250 CLANHE = VALUE
251 RETURN
252*
253* End of CLANHE
254*
255 END
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
logical function sisnan(sin)
SISNAN tests input for NaN.
Definition sisnan.f:59
subroutine classq(n, x, incx, scl, sumsq)
CLASSQ updates a sum of squares represented in scaled form.
Definition classq.f90:137
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
real function clanhe(norm, uplo, n, a, lda, work)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhe.f:124