OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
cpbt01.f
Go to the documentation of this file.
1*> \brief \b CPBT01
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
12* RESID )
13*
14* .. Scalar Arguments ..
15* CHARACTER UPLO
16* INTEGER KD, LDA, LDAFAC, N
17* REAL RESID
18* ..
19* .. Array Arguments ..
20* REAL RWORK( * )
21* COMPLEX A( LDA, * ), AFAC( LDAFAC, * )
22* ..
23*
24*
25*> \par Purpose:
26* =============
27*>
28*> \verbatim
29*>
30*> CPBT01 reconstructs a Hermitian positive definite band matrix A from
31*> its L*L' or U'*U factorization and computes the residual
32*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
33*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
34*> where EPS is the machine epsilon, L' is the conjugate transpose of
35*> L, and U' is the conjugate transpose of U.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] UPLO
42*> \verbatim
43*> UPLO is CHARACTER*1
44*> Specifies whether the upper or lower triangular part of the
45*> Hermitian matrix A is stored:
46*> = 'U': Upper triangular
47*> = 'L': Lower triangular
48*> \endverbatim
49*>
50*> \param[in] N
51*> \verbatim
52*> N is INTEGER
53*> The number of rows and columns of the matrix A. N >= 0.
54*> \endverbatim
55*>
56*> \param[in] KD
57*> \verbatim
58*> KD is INTEGER
59*> The number of super-diagonals of the matrix A if UPLO = 'U',
60*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
61*> \endverbatim
62*>
63*> \param[in] A
64*> \verbatim
65*> A is COMPLEX array, dimension (LDA,N)
66*> The original Hermitian band matrix A. If UPLO = 'U', the
67*> upper triangular part of A is stored as a band matrix; if
68*> UPLO = 'L', the lower triangular part of A is stored. The
69*> columns of the appropriate triangle are stored in the columns
70*> of A and the diagonals of the triangle are stored in the rows
71*> of A. See CPBTRF for further details.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER.
77*> The leading dimension of the array A. LDA >= max(1,KD+1).
78*> \endverbatim
79*>
80*> \param[in] AFAC
81*> \verbatim
82*> AFAC is COMPLEX array, dimension (LDAFAC,N)
83*> The factored form of the matrix A. AFAC contains the factor
84*> L or U from the L*L' or U'*U factorization in band storage
85*> format, as computed by CPBTRF.
86*> \endverbatim
87*>
88*> \param[in] LDAFAC
89*> \verbatim
90*> LDAFAC is INTEGER
91*> The leading dimension of the array AFAC.
92*> LDAFAC >= max(1,KD+1).
93*> \endverbatim
94*>
95*> \param[out] RWORK
96*> \verbatim
97*> RWORK is REAL array, dimension (N)
98*> \endverbatim
99*>
100*> \param[out] RESID
101*> \verbatim
102*> RESID is REAL
103*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
104*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
105*> \endverbatim
106*
107* Authors:
108* ========
109*
110*> \author Univ. of Tennessee
111*> \author Univ. of California Berkeley
112*> \author Univ. of Colorado Denver
113*> \author NAG Ltd.
114*
115*> \ingroup complex_lin
116*
117* =====================================================================
118 SUBROUTINE cpbt01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
119 $ RESID )
120*
121* -- LAPACK test routine --
122* -- LAPACK is a software package provided by Univ. of Tennessee, --
123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124*
125* .. Scalar Arguments ..
126 CHARACTER UPLO
127 INTEGER KD, LDA, LDAFAC, N
128 REAL RESID
129* ..
130* .. Array Arguments ..
131 REAL RWORK( * )
132 COMPLEX A( LDA, * ), AFAC( LDAFAC, * )
133* ..
134*
135* =====================================================================
136*
137*
138* .. Parameters ..
139 REAL ZERO, ONE
140 parameter( zero = 0.0e+0, one = 1.0e+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER I, J, K, KC, KLEN, ML, MU
144 REAL AKK, ANORM, EPS
145* ..
146* .. External Functions ..
147 LOGICAL LSAME
148 REAL CLANHB, SLAMCH
149 COMPLEX CDOTC
150 EXTERNAL lsame, clanhb, slamch, cdotc
151* ..
152* .. External Subroutines ..
153 EXTERNAL cher, csscal, ctrmv
154* ..
155* .. Intrinsic Functions ..
156 INTRINSIC aimag, max, min, real
157* ..
158* .. Executable Statements ..
159*
160* Quick exit if N = 0.
161*
162 IF( n.LE.0 ) THEN
163 resid = zero
164 RETURN
165 END IF
166*
167* Exit with RESID = 1/EPS if ANORM = 0.
168*
169 eps = slamch( 'Epsilon' )
170 anorm = clanhb( '1', uplo, n, kd, a, lda, rwork )
171 IF( anorm.LE.zero ) THEN
172 resid = one / eps
173 RETURN
174 END IF
175*
176* Check the imaginary parts of the diagonal elements and return with
177* an error code if any are nonzero.
178*
179 IF( lsame( uplo, 'u' ) ) THEN
180 DO 10 J = 1, N
181.NE. IF( AIMAG( AFAC( KD+1, J ) )ZERO ) THEN
182 RESID = ONE / EPS
183 RETURN
184 END IF
185 10 CONTINUE
186 ELSE
187 DO 20 J = 1, N
188.NE. IF( AIMAG( AFAC( 1, J ) )ZERO ) THEN
189 RESID = ONE / EPS
190 RETURN
191 END IF
192 20 CONTINUE
193 END IF
194*
195* Compute the product U'*U, overwriting U.
196*
197 IF( LSAME( UPLO, 'u' ) ) THEN
198 DO 30 K = N, 1, -1
199 KC = MAX( 1, KD+2-K )
200 KLEN = KD + 1 - KC
201*
202* Compute the (K,K) element of the result.
203*
204 AKK = CDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
205 AFAC( KD+1, K ) = AKK
206*
207* Compute the rest of column K.
208*
209.GT. IF( KLEN0 )
210 $ CALL CTRMV( 'upper', 'Conjugate', 'Non-unit', klen,
211 $ afac( kd+1, k-klen ), ldafac-1,
212 $ afac( kc, k ), 1 )
213*
214 30 CONTINUE
215*
216* UPLO = 'L': Compute the product L*L', overwriting L.
217*
218 ELSE
219 DO 40 k = n, 1, -1
220 klen = min( kd, n-k )
221*
222* Add a multiple of column K of the factor L to each of
223* columns K+1 through N.
224*
225 IF( klen.GT.0 )
226 $ CALL cher( 'Lower', klen, one, afac( 2, k ), 1,
227 $ afac( 1, k+1 ), ldafac-1 )
228*
229* Scale column K by the diagonal element.
230*
231 akk = afac( 1, k )
232 CALL csscal( klen+1, akk, afac( 1, k ), 1 )
233*
234 40 CONTINUE
235 END IF
236*
237* Compute the difference L*L' - A or U'*U - A.
238*
239 IF( lsame( uplo, 'U' ) ) THEN
240 DO 60 j = 1, n
241 mu = max( 1, kd+2-j )
242 DO 50 i = mu, kd + 1
243 afac( i, j ) = afac( i, j ) - a( i, j )
244 50 CONTINUE
245 60 CONTINUE
246 ELSE
247 DO 80 j = 1, n
248 ml = min( kd+1, n-j+1 )
249 DO 70 i = 1, ml
250 afac( i, j ) = afac( i, j ) - a( i, j )
251 70 CONTINUE
252 80 CONTINUE
253 END IF
254*
255* Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
256*
257 resid = clanhb( '1', uplo, n, kd, afac, ldafac, rwork )
258*
259 resid = ( ( resid / real( n ) ) / anorm ) / eps
260*
261 RETURN
262*
263* End of CPBT01
264*
265 END
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine ctrmv(uplo, trans, diag, n, a, lda, x, incx)
CTRMV
Definition ctrmv.f:147
subroutine cher(uplo, n, alpha, x, incx, a, lda)
CHER
Definition cher.f:135
subroutine cpbt01(uplo, n, kd, a, lda, afac, ldafac, rwork, resid)
CPBT01
Definition cpbt01.f:120
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21