OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
ctbcon.f
Go to the documentation of this file.
1*> \brief \b CTBCON
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CTBCON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctbcon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctbcon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctbcon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CTBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK,
22* RWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER DIAG, NORM, UPLO
26* INTEGER INFO, KD, LDAB, N
27* REAL RCOND
28* ..
29* .. Array Arguments ..
30* REAL RWORK( * )
31* COMPLEX AB( LDAB, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> CTBCON estimates the reciprocal of the condition number of a
41*> triangular band matrix A, in either the 1-norm or the infinity-norm.
42*>
43*> The norm of A is computed and an estimate is obtained for
44*> norm(inv(A)), then the reciprocal of the condition number is
45*> computed as
46*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] NORM
53*> \verbatim
54*> NORM is CHARACTER*1
55*> Specifies whether the 1-norm condition number or the
56*> infinity-norm condition number is required:
57*> = '1' or 'O': 1-norm;
58*> = 'I': Infinity-norm.
59*> \endverbatim
60*>
61*> \param[in] UPLO
62*> \verbatim
63*> UPLO is CHARACTER*1
64*> = 'U': A is upper triangular;
65*> = 'L': A is lower triangular.
66*> \endverbatim
67*>
68*> \param[in] DIAG
69*> \verbatim
70*> DIAG is CHARACTER*1
71*> = 'N': A is non-unit triangular;
72*> = 'U': A is unit triangular.
73*> \endverbatim
74*>
75*> \param[in] N
76*> \verbatim
77*> N is INTEGER
78*> The order of the matrix A. N >= 0.
79*> \endverbatim
80*>
81*> \param[in] KD
82*> \verbatim
83*> KD is INTEGER
84*> The number of superdiagonals or subdiagonals of the
85*> triangular band matrix A. KD >= 0.
86*> \endverbatim
87*>
88*> \param[in] AB
89*> \verbatim
90*> AB is COMPLEX array, dimension (LDAB,N)
91*> The upper or lower triangular band matrix A, stored in the
92*> first kd+1 rows of the array. The j-th column of A is stored
93*> in the j-th column of the array AB as follows:
94*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
95*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
96*> If DIAG = 'U', the diagonal elements of A are not referenced
97*> and are assumed to be 1.
98*> \endverbatim
99*>
100*> \param[in] LDAB
101*> \verbatim
102*> LDAB is INTEGER
103*> The leading dimension of the array AB. LDAB >= KD+1.
104*> \endverbatim
105*>
106*> \param[out] RCOND
107*> \verbatim
108*> RCOND is REAL
109*> The reciprocal of the condition number of the matrix A,
110*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
111*> \endverbatim
112*>
113*> \param[out] WORK
114*> \verbatim
115*> WORK is COMPLEX array, dimension (2*N)
116*> \endverbatim
117*>
118*> \param[out] RWORK
119*> \verbatim
120*> RWORK is REAL array, dimension (N)
121*> \endverbatim
122*>
123*> \param[out] INFO
124*> \verbatim
125*> INFO is INTEGER
126*> = 0: successful exit
127*> < 0: if INFO = -i, the i-th argument had an illegal value
128*> \endverbatim
129*
130* Authors:
131* ========
132*
133*> \author Univ. of Tennessee
134*> \author Univ. of California Berkeley
135*> \author Univ. of Colorado Denver
136*> \author NAG Ltd.
137*
138*> \ingroup complexOTHERcomputational
139*
140* =====================================================================
141 SUBROUTINE ctbcon( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK,
142 $ RWORK, INFO )
143*
144* -- LAPACK computational routine --
145* -- LAPACK is a software package provided by Univ. of Tennessee, --
146* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
147*
148* .. Scalar Arguments ..
149 CHARACTER DIAG, NORM, UPLO
150 INTEGER INFO, KD, LDAB, N
151 REAL RCOND
152* ..
153* .. Array Arguments ..
154 REAL RWORK( * )
155 COMPLEX AB( LDAB, * ), WORK( * )
156* ..
157*
158* =====================================================================
159*
160* .. Parameters ..
161 REAL ONE, ZERO
162 parameter( one = 1.0e+0, zero = 0.0e+0 )
163* ..
164* .. Local Scalars ..
165 LOGICAL NOUNIT, ONENRM, UPPER
166 CHARACTER NORMIN
167 INTEGER IX, KASE, KASE1
168 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
169 COMPLEX ZDUM
170* ..
171* .. Local Arrays ..
172 INTEGER ISAVE( 3 )
173* ..
174* .. External Functions ..
175 LOGICAL LSAME
176 INTEGER ICAMAX
177 REAL CLANTB, SLAMCH
178 EXTERNAL lsame, icamax, clantb, slamch
179* ..
180* .. External Subroutines ..
181 EXTERNAL clacn2, clatbs, csrscl, xerbla
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC abs, aimag, max, real
185* ..
186* .. Statement Functions ..
187 REAL CABS1
188* ..
189* .. Statement Function definitions ..
190 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
191* ..
192* .. Executable Statements ..
193*
194* Test the input parameters.
195*
196 info = 0
197 upper = lsame( uplo, 'U' )
198 onenrm = norm.EQ.'1.OR.' LSAME( NORM, 'o' )
199 NOUNIT = LSAME( DIAG, 'n' )
200*
201.NOT..AND..NOT. IF( ONENRM LSAME( NORM, 'i' ) ) THEN
202 INFO = -1
203.NOT..AND..NOT. ELSE IF( UPPER LSAME( UPLO, 'l' ) ) THEN
204 INFO = -2
205.NOT..AND..NOT. ELSE IF( NOUNIT LSAME( DIAG, 'u' ) ) THEN
206 INFO = -3
207.LT. ELSE IF( N0 ) THEN
208 INFO = -4
209.LT. ELSE IF( KD0 ) THEN
210 INFO = -5
211.LT. ELSE IF( LDABKD+1 ) THEN
212 INFO = -7
213 END IF
214.NE. IF( INFO0 ) THEN
215 CALL XERBLA( 'ctbcon', -INFO )
216 RETURN
217 END IF
218*
219* Quick return if possible
220*
221.EQ. IF( N0 ) THEN
222 RCOND = ONE
223 RETURN
224 END IF
225*
226 RCOND = ZERO
227 SMLNUM = SLAMCH( 'safe minimum' )*REAL( MAX( N, 1 ) )
228*
229* Compute the 1-norm of the triangular matrix A or A**H.
230*
231 ANORM = CLANTB( NORM, UPLO, DIAG, N, KD, AB, LDAB, RWORK )
232*
233* Continue only if ANORM > 0.
234*
235.GT. IF( ANORMZERO ) THEN
236*
237* Estimate the 1-norm of the inverse of A.
238*
239 AINVNM = ZERO
240 NORMIN = 'n'
241 IF( ONENRM ) THEN
242 KASE1 = 1
243 ELSE
244 KASE1 = 2
245 END IF
246 KASE = 0
247 10 CONTINUE
248 CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
249.NE. IF( KASE0 ) THEN
250.EQ. IF( KASEKASE1 ) THEN
251*
252* Multiply by inv(A).
253*
254 CALL CLATBS( UPLO, 'no transpose', DIAG, NORMIN, N, KD,
255 $ AB, LDAB, WORK, SCALE, RWORK, INFO )
256 ELSE
257*
258* Multiply by inv(A**H).
259*
260 CALL CLATBS( UPLO, 'conjugate transpose', DIAG, NORMIN,
261 $ N, KD, AB, LDAB, WORK, SCALE, RWORK, INFO )
262 END IF
263 NORMIN = 'y'
264*
265* Multiply by 1/SCALE if doing so will not cause overflow.
266*
267.NE. IF( SCALEONE ) THEN
268 IX = ICAMAX( N, WORK, 1 )
269 XNORM = CABS1( WORK( IX ) )
270.LT..OR..EQ. IF( SCALEXNORM*SMLNUM SCALEZERO )
271 $ GO TO 20
272 CALL CSRSCL( N, SCALE, WORK, 1 )
273 END IF
274 GO TO 10
275 END IF
276*
277* Compute the estimate of the reciprocal condition number.
278*
279.NE. IF( AINVNMZERO )
280 $ RCOND = ( ONE / ANORM ) / AINVNM
281 END IF
282*
283 20 CONTINUE
284 RETURN
285*
286* End of CTBCON
287*
288 END
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine clatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
CLATBS solves a triangular banded system of equations.
Definition clatbs.f:243
subroutine csrscl(n, sa, sx, incx)
CSRSCL multiplies a vector by the reciprocal of a real scalar.
Definition csrscl.f:84
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
subroutine ctbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)
CTBCON
Definition ctbcon.f:143
#define max(a, b)
Definition macros.h:21