385 SUBROUTINE ddrves( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
386 $ NOUNIT, A, LDA, H, HT, WR, WI, WRT, WIT, VS,
387 $ LDVS, RESULT, WORK, NWORK, IWORK, BWORK, INFO )
394 INTEGER INFO, LDA, LDVS, NOUNIT, NSIZES, NTYPES, NWORK
395 DOUBLE PRECISION THRESH
398 LOGICAL BWORK( * ), DOTYPE( * )
399 INTEGER ISEED( 4 ), IWORK( * ), NN( * )
400 DOUBLE PRECISION A( LDA, * ), H( LDA, * ), HT( LDA, * ),
401 $ result( 13 ), vs( ldvs, * ), wi( * ), wit( * ),
402 $ work( * ), wr( * ), wrt( * )
408 DOUBLE PRECISION ZERO, ONE
409 PARAMETER ( ZERO = 0.0d0, one = 1.0d0 )
411 parameter( maxtyp = 21 )
417 INTEGER I, IINFO, IMODE, ISORT, ITYPE, IWK, J, JCOL,
418 $ jsize, jtype, knteig, lwork, mtypes, n, nerrs,
419 $ nfail, nmax, nnwork, ntest, ntestf, ntestt,
421 DOUBLE PRECISION ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TMP,
425 CHARACTER ADUMMA( 1 )
426 INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
427 $ kmagn( maxtyp ), kmode( maxtyp ),
429 DOUBLE PRECISION RES( 2 )
433 DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
436 INTEGER SELDIM, SELOPT
439 COMMON / sslct / selopt, seldim, selval, selwr, selwi
451 INTRINSIC abs,
max, sign, sqrt
454 DATA ktype / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
455 DATA kmagn / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
457 DATA kmode / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
458 $ 1, 5, 5, 5, 4, 3, 1 /
459 DATA kconds / 3*0, 5*0, 4*1, 6*2, 3*0 /
463 path( 1: 1 ) =
'Double precision'
478 nmax =
max( nmax, nn( j ) )
485 IF( nsizes.LT.0 )
THEN
487 ELSE IF( badnn )
THEN
489 ELSE IF( ntypes.LT.0 )
THEN
491 ELSE IF( thresh.LT.zero )
THEN
493 ELSE IF( nounit.LE.0 )
THEN
495 ELSE IF( lda.LT.1 .OR. lda.LT.nmax )
THEN
497 ELSE IF( ldvs.LT.1 .OR. ldvs.LT.nmax )
THEN
499 ELSE IF( 5*nmax+2*nmax**2.GT.nwork )
THEN
504 CALL xerbla(
'DDRVES', -info )
510 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
515 unfl =
dlamch(
'Safe minimum' )
518 ulp =
dlamch(
'Precision' )
527 DO 270 jsize = 1, nsizes
530 IF( nsizes.EQ.1 .AND. ntypes.EQ.maxtyp+1 )
531 $ mtypes = mtypes + 1
533 DO 260 jtype = 1, mtypes
534 IF( .NOT.dotype( jtype ) )
540 ioldsd( j ) = iseed( j )
559 IF( mtypes.GT.maxtyp )
562 itype = ktype( jtype )
563 imode = kmode( jtype )
567 GO TO ( 30, 40, 50 )kmagn( jtype )
583 CALL dlaset(
'Full', lda, n, zero, zero, a, lda )
591 IF( itype.EQ.1 )
THEN
594 ELSE IF( itype.EQ.2 )
THEN
599 a( jcol, jcol ) = anorm
602 ELSE IF( itype.EQ.3 )
THEN
607 a( jcol, jcol ) = anorm
609 $ a( jcol, jcol-1 ) = one
612 ELSE IF( itype.EQ.4 )
THEN
616 CALL dlatms( n, n,
'S', iseed,
'S', work, imode, cond,
617 $ anorm, 0, 0,
'N', a, lda, work( n+1 ),
620 ELSE IF( itype.EQ.5 )
THEN
624 CALL dlatms( n, n,
'S', iseed,
'S', work, imode, cond,
625 $ anorm, n, n,
'N', a, lda, work( n+1 ),
628 ELSE IF( itype.EQ.6 )
THEN
632 IF( kconds( jtype ).EQ.1 )
THEN
634 ELSE IF( kconds( jtype ).EQ.2 )
THEN
641 CALL dlatme( n,
'S', iseed, work, imode, cond, one,
642 $ adumma,
'T',
'T',
'T', work( n+1 ), 4,
643 $ conds, n, n, anorm, a, lda, work( 2*n+1 ),
646 ELSE IF( itype.EQ.7 )
THEN
650 CALL dlatmr( n, n,
'S', iseed,
'S', work, 6, one, one,
651 $
'T',
'N', work( n+1 ), 1, one,
652 $ work( 2*n+1 ), 1, one,
'N', idumma, 0, 0,
653 $ zero, anorm,
'NO', a, lda, iwork, iinfo )
655 ELSE IF( itype.EQ.8 )
THEN
659 CALL dlatmr( n, n,
'S', iseed,
'S', work, 6, one, one,
660 $
'T',
'N', work( n+1 ), 1, one,
662 $ zero, anorm,
'NO', a, lda, iwork, iinfo )
664 ELSE IF( itype.EQ.9 )
THEN
668 CALL dlatmr( n, n,
'S', iseed,
'N', work, 6, one, one,
669 $
'T',
'N', work( n+1 ), 1, one,
670 $ work( 2*n+1 ), 1, one,
'N', idumma, n, n,
671 $ zero, anorm,
'NO', a, lda, iwork, iinfo )
673 CALL dlaset(
'Full', 2, n, zero, zero, a, lda )
674 CALL dlaset(
'Full', n-3, 1, zero, zero, a( 3, 1 ),
676 CALL dlaset(
'Full', n-3, 2, zero, zero, a( 3, n-1 ),
678 CALL dlaset(
'Full', 1, n, zero, zero, a( n, 1 ),
682 ELSE IF( itype.EQ.10 )
THEN
686 CALL dlatmr( n, n,
'S', iseed,
'N', work, 6, one, one,
687 $
'T',
'N', work( n+1 ), 1, one,
688 $ work( 2*n+1 ), 1, one,
'N', idumma, n, 0,
689 $ zero, anorm,
'NO', a, lda, iwork, iinfo )
696 IF( iinfo.NE.0 )
THEN
697 WRITE( nounit, fmt = 9992 )
'Generator', iinfo, n, jtype,
711 nnwork = 5*n + 2*n**2
713 nnwork =
max( nnwork, 1 )
724 IF( isort.EQ.0 )
THEN
734 CALL dlacpy(
'F', n, n, a, lda, h, lda )
735 CALL dgees(
'V', sort, dslect, n, h, lda, sdim, wr,
736 $ wi, vs, ldvs, work, nnwork, bwork, iinfo )
737 IF( iinfo.NE.0 .AND. iinfo.NE.n+2 )
THEN
738 result( 1+rsub ) = ulpinv
739 WRITE( nounit, fmt = 9992 )
'DGEES1', iinfo, n,
747 result( 1+rsub ) = zero
750 IF( h( i, j ).NE.zero )
751 $ result( 1+rsub ) = ulpinv
755 IF( h( i+1, i ).NE.zero .AND. h( i+2, i+1 ).NE.
756 $ zero )result( 1+rsub ) = ulpinv
759 IF( h( i+1, i ).NE.zero )
THEN
760 IF( h( i, i ).NE.h( i+1, i+1 ) .OR.
761 $ h( i, i+1 ).EQ.zero .OR.
762 $ sign( one, h( i+1, i ) ).EQ.
763 $ sign( one, h( i, i+1 ) ) )result( 1+rsub )
770 lwork =
max( 1, 2*n*n )
771 CALL dhst01( n, 1, n, a, lda, h, lda, vs, ldvs, work,
773 result( 2+rsub ) = res( 1 )
774 result( 3+rsub ) = res( 2 )
778 result( 4+rsub ) = zero
780 IF( h( i, i ).NE.wr( i ) )
781 $ result( 4+rsub ) = ulpinv
784 IF( h( 2, 1 ).EQ.zero .AND. wi( 1 ).NE.zero )
785 $ result( 4+rsub ) = ulpinv
786 IF( h( n, n-1 ).EQ.zero .AND. wi( n ).NE.zero )
787 $ result( 4+rsub ) = ulpinv
790 IF( h( i+1, i ).NE.zero )
THEN
791 tmp = sqrt( abs( h( i+1, i ) ) )*
792 $ sqrt( abs( h( i, i+1 ) ) )
793 result( 4+rsub ) =
max( result( 4+rsub ),
794 $ abs( wi( i )-tmp ) /
795 $
max( ulp*tmp, unfl ) )
796 result( 4+rsub ) =
max( result( 4+rsub ),
797 $ abs( wi( i+1 )+tmp ) /
798 $
max( ulp*tmp, unfl ) )
799 ELSE IF( i.GT.1 )
THEN
800 IF( h( i+1, i ).EQ.zero .AND. h( i, i-1 ).EQ.
801 $ zero .AND. wi( i ).NE.zero )result( 4+rsub )
808 CALL dlacpy(
'F', n, n, a, lda, ht, lda )
809 CALL dgees(
'N', sort, dslect, n, ht, lda, sdim, wrt,
810 $ wit, vs, ldvs, work, nnwork, bwork,
812 IF( iinfo.NE.0 .AND. iinfo.NE.n+2 )
THEN
813 result( 5+rsub ) = ulpinv
814 WRITE( nounit, fmt = 9992 )
'DGEES2', iinfo, n,
820 result( 5+rsub ) = zero
823 IF( h( i, j ).NE.ht( i, j ) )
824 $ result( 5+rsub ) = ulpinv
830 result( 6+rsub ) = zero
832 IF( wr( i ).NE.wrt( i ) .OR. wi( i ).NE.wit( i ) )
833 $ result( 6+rsub ) = ulpinv
838 IF( isort.EQ.1 )
THEN
842 IF( dslect( wr( i ), wi( i ) ) .OR.
843 $ dslect( wr( i ), -wi( i ) ) )
844 $ knteig = knteig + 1
846 IF( ( dslect( wr( i+1 ),
847 $ wi( i+1 ) ) .OR. dslect( wr( i+1 ),
848 $ -wi( i+1 ) ) ) .AND.
849 $ ( .NOT.( dslect( wr( i ),
850 $ wi( i ) ) .OR. dslect( wr( i ),
851 $ -wi( i ) ) ) ) .AND. iinfo.NE.n+2 )
852 $ result( 13 ) = ulpinv
855 IF( sdim.NE.knteig )
THEN
856 result( 13 ) = ulpinv
869 IF( result( j ).GE.zero )
871 IF( result( j ).GE.thresh )
876 $ ntestf = ntestf + 1
877 IF( ntestf.EQ.1 )
THEN
878 WRITE( nounit, fmt = 9999 )path
879 WRITE( nounit, fmt = 9998 )
880 WRITE( nounit, fmt = 9997 )
881 WRITE( nounit, fmt = 9996 )
882 WRITE( nounit, fmt = 9995 )thresh
883 WRITE( nounit, fmt = 9994 )
888 IF( result( j ).GE.thresh )
THEN
889 WRITE( nounit, fmt = 9993 )n, iwk, ioldsd, jtype,
894 nerrs = nerrs + nfail
895 ntestt = ntestt + ntest
903 CALL dlasum( path, nounit, nerrs, ntestt )
905 9999
FORMAT( / 1x, a3,
' -- Real Schur Form Decomposition Driver',
906 $ /
' Matrix types (see DDRVES for details): ' )
908 9998
FORMAT( /
' Special Matrices:', /
' 1=Zero matrix. ',
909 $
' ',
' 5=Diagonal: geometr. spaced entries.',
910 $ /
' 2=Identity matrix. ',
' 6=Diagona',
911 $
'l: clustered entries.', /
' 3=Transposed Jordan block. ',
912 $
' ',
' 7=Diagonal: large, evenly spaced.', /
' ',
913 $
'4=Diagonal: evenly spaced entries. ',
' 8=Diagonal: s',
914 $
'mall, evenly spaced.' )
915 9997
FORMAT(
' Dense, Non-Symmetric Matrices:', /
' 9=Well-cond., ev',
916 $
'enly spaced eigenvals.',
' 14=Ill-cond., geomet. spaced e',
917 $
'igenals.', /
' 10=Well-cond., geom. spaced eigenvals. ',
918 $
' 15=Ill-conditioned, clustered e.vals.', /
' 11=Well-cond',
919 $
'itioned, clustered e.vals. ',
' 16=Ill-cond., random comp',
920 $
'lex ', /
' 12=Well-cond., random complex ', 6x,
' ',
921 $
' 17=Ill-cond., large rand. complx ', /
' 13=Ill-condi',
922 $
'tioned, evenly spaced. ',
' 18=Ill-cond., small rand.',
924 9996
FORMAT(
' 19=Matrix with random O(1) entries. ',
' 21=Matrix ',
925 $
'with small random entries.', /
' 20=Matrix with large ran',
926 $
'dom entries. ', / )
927 9995
FORMAT(
' Tests performed with test threshold =', f8.2,
928 $ /
' ( A denotes A on input and T denotes A on output)',
929 $ / /
' 1 = 0 if T in Schur form (no sort), ',
930 $
' 1/ulp otherwise', /
931 $
' 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)',
932 $ /
' 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort) ', /
933 $
' 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),',
934 $
' 1/ulp otherwise', /
935 $
' 5 = 0 if T same no matter if VS computed (no sort),',
936 $
' 1/ulp otherwise', /
937 $
' 6 = 0 if WR, WI same no matter if VS computed (no sort)',
938 $
', 1/ulp otherwise' )
939 9994
FORMAT(
' 7 = 0 if T in Schur form (sort), ',
' 1/ulp otherwise',
940 $ /
' 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)',
941 $ /
' 9 = | I - VS transpose(VS) | / ( n ulp ) (sort) ',
942 $ /
' 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),',
943 $
' 1/ulp otherwise', /
944 $
' 11 = 0 if T same no matter if VS computed (sort),',
945 $
' 1/ulp otherwise', /
946 $
' 12 = 0 if WR, WI same no matter if VS computed (sort),',
947 $ ' 1/ulp otherwise
', /
948 $ ' 13 = 0
if sorting successful, 1/ulp otherwise
', / )
949 9993 FORMAT( ' n=
', I5, ', iwk=
', I2, ',
seed=
', 4( I4, ',
' ),
950 $ ' type ', I2, ', test(
', I2, ')=
', G10.3 )
951 9992 FORMAT( ' ddrves:
', A, ' returned info=
', I6, '.
', / 9X, 'n=
',
952 $ I6, ', jtype=
', I6, ', iseed=(
', 3( I5, ',
' ), I5, ')
' )