OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dgelsd.f
Go to the documentation of this file.
1*> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGELSD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
22* WORK, LWORK, IWORK, INFO )
23*
24* .. Scalar Arguments ..
25* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
26* DOUBLE PRECISION RCOND
27* ..
28* .. Array Arguments ..
29* INTEGER IWORK( * )
30* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> DGELSD computes the minimum-norm solution to a real linear least
40*> squares problem:
41*> minimize 2-norm(| b - A*x |)
42*> using the singular value decomposition (SVD) of A. A is an M-by-N
43*> matrix which may be rank-deficient.
44*>
45*> Several right hand side vectors b and solution vectors x can be
46*> handled in a single call; they are stored as the columns of the
47*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
48*> matrix X.
49*>
50*> The problem is solved in three steps:
51*> (1) Reduce the coefficient matrix A to bidiagonal form with
52*> Householder transformations, reducing the original problem
53*> into a "bidiagonal least squares problem" (BLS)
54*> (2) Solve the BLS using a divide and conquer approach.
55*> (3) Apply back all the Householder transformations to solve
56*> the original least squares problem.
57*>
58*> The effective rank of A is determined by treating as zero those
59*> singular values which are less than RCOND times the largest singular
60*> value.
61*>
62*> The divide and conquer algorithm makes very mild assumptions about
63*> floating point arithmetic. It will work on machines with a guard
64*> digit in add/subtract, or on those binary machines without guard
65*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
66*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
67*> without guard digits, but we know of none.
68*> \endverbatim
69*
70* Arguments:
71* ==========
72*
73*> \param[in] M
74*> \verbatim
75*> M is INTEGER
76*> The number of rows of A. M >= 0.
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*> N is INTEGER
82*> The number of columns of A. N >= 0.
83*> \endverbatim
84*>
85*> \param[in] NRHS
86*> \verbatim
87*> NRHS is INTEGER
88*> The number of right hand sides, i.e., the number of columns
89*> of the matrices B and X. NRHS >= 0.
90*> \endverbatim
91*>
92*> \param[in,out] A
93*> \verbatim
94*> A is DOUBLE PRECISION array, dimension (LDA,N)
95*> On entry, the M-by-N matrix A.
96*> On exit, A has been destroyed.
97*> \endverbatim
98*>
99*> \param[in] LDA
100*> \verbatim
101*> LDA is INTEGER
102*> The leading dimension of the array A. LDA >= max(1,M).
103*> \endverbatim
104*>
105*> \param[in,out] B
106*> \verbatim
107*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
108*> On entry, the M-by-NRHS right hand side matrix B.
109*> On exit, B is overwritten by the N-by-NRHS solution
110*> matrix X. If m >= n and RANK = n, the residual
111*> sum-of-squares for the solution in the i-th column is given
112*> by the sum of squares of elements n+1:m in that column.
113*> \endverbatim
114*>
115*> \param[in] LDB
116*> \verbatim
117*> LDB is INTEGER
118*> The leading dimension of the array B. LDB >= max(1,max(M,N)).
119*> \endverbatim
120*>
121*> \param[out] S
122*> \verbatim
123*> S is DOUBLE PRECISION array, dimension (min(M,N))
124*> The singular values of A in decreasing order.
125*> The condition number of A in the 2-norm = S(1)/S(min(m,n)).
126*> \endverbatim
127*>
128*> \param[in] RCOND
129*> \verbatim
130*> RCOND is DOUBLE PRECISION
131*> RCOND is used to determine the effective rank of A.
132*> Singular values S(i) <= RCOND*S(1) are treated as zero.
133*> If RCOND < 0, machine precision is used instead.
134*> \endverbatim
135*>
136*> \param[out] RANK
137*> \verbatim
138*> RANK is INTEGER
139*> The effective rank of A, i.e., the number of singular values
140*> which are greater than RCOND*S(1).
141*> \endverbatim
142*>
143*> \param[out] WORK
144*> \verbatim
145*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
146*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
147*> \endverbatim
148*>
149*> \param[in] LWORK
150*> \verbatim
151*> LWORK is INTEGER
152*> The dimension of the array WORK. LWORK must be at least 1.
153*> The exact minimum amount of workspace needed depends on M,
154*> N and NRHS. As long as LWORK is at least
155*> 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
156*> if M is greater than or equal to N or
157*> 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
158*> if M is less than N, the code will execute correctly.
159*> SMLSIZ is returned by ILAENV and is equal to the maximum
160*> size of the subproblems at the bottom of the computation
161*> tree (usually about 25), and
162*> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
163*> For good performance, LWORK should generally be larger.
164*>
165*> If LWORK = -1, then a workspace query is assumed; the routine
166*> only calculates the optimal size of the WORK array, returns
167*> this value as the first entry of the WORK array, and no error
168*> message related to LWORK is issued by XERBLA.
169*> \endverbatim
170*>
171*> \param[out] IWORK
172*> \verbatim
173*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
174*> LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
175*> where MINMN = MIN( M,N ).
176*> On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
177*> \endverbatim
178*>
179*> \param[out] INFO
180*> \verbatim
181*> INFO is INTEGER
182*> = 0: successful exit
183*> < 0: if INFO = -i, the i-th argument had an illegal value.
184*> > 0: the algorithm for computing the SVD failed to converge;
185*> if INFO = i, i off-diagonal elements of an intermediate
186*> bidiagonal form did not converge to zero.
187*> \endverbatim
188*
189* Authors:
190* ========
191*
192*> \author Univ. of Tennessee
193*> \author Univ. of California Berkeley
194*> \author Univ. of Colorado Denver
195*> \author NAG Ltd.
196*
197*> \ingroup doubleGEsolve
198*
199*> \par Contributors:
200* ==================
201*>
202*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
203*> California at Berkeley, USA \n
204*> Osni Marques, LBNL/NERSC, USA \n
205*
206* =====================================================================
207 SUBROUTINE dgelsd( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
208 $ WORK, LWORK, IWORK, INFO )
209*
210* -- LAPACK driver routine --
211* -- LAPACK is a software package provided by Univ. of Tennessee, --
212* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
213*
214* .. Scalar Arguments ..
215 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
216 DOUBLE PRECISION RCOND
217* ..
218* .. Array Arguments ..
219 INTEGER IWORK( * )
220 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
221* ..
222*
223* =====================================================================
224*
225* .. Parameters ..
226 DOUBLE PRECISION ZERO, ONE, TWO
227 parameter( zero = 0.0d0, one = 1.0d0, two = 2.0d0 )
228* ..
229* .. Local Scalars ..
230 LOGICAL LQUERY
231 INTEGER IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
232 $ ldwork, liwork, maxmn, maxwrk, minmn, minwrk,
233 $ mm, mnthr, nlvl, nwork, smlsiz, wlalsd
234 DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
235* ..
236* .. External Subroutines ..
237 EXTERNAL dgebrd, dgelqf, dgeqrf, dlabad, dlacpy, dlalsd,
239* ..
240* .. External Functions ..
241 INTEGER ILAENV
242 DOUBLE PRECISION DLAMCH, DLANGE
243 EXTERNAL ilaenv, dlamch, dlange
244* ..
245* .. Intrinsic Functions ..
246 INTRINSIC dble, int, log, max, min
247* ..
248* .. Executable Statements ..
249*
250* Test the input arguments.
251*
252 info = 0
253 minmn = min( m, n )
254 maxmn = max( m, n )
255 mnthr = ilaenv( 6, 'DGELSD', ' ', m, n, nrhs, -1 )
256 lquery = ( lwork.EQ.-1 )
257 IF( m.LT.0 ) THEN
258 info = -1
259 ELSE IF( n.LT.0 ) THEN
260 info = -2
261 ELSE IF( nrhs.LT.0 ) THEN
262 info = -3
263 ELSE IF( lda.LT.max( 1, m ) ) THEN
264 info = -5
265 ELSE IF( ldb.LT.max( 1, maxmn ) ) THEN
266 info = -7
267 END IF
268*
269 smlsiz = ilaenv( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
270*
271* Compute workspace.
272* (Note: Comments in the code beginning "Workspace:" describe the
273* minimal amount of workspace needed at that point in the code,
274* as well as the preferred amount for good performance.
275* NB refers to the optimal block size for the immediately
276* following subroutine, as returned by ILAENV.)
277*
278 minwrk = 1
279 liwork = 1
280 minmn = max( 1, minmn )
281 nlvl = max( int( log( dble( minmn ) / dble( smlsiz+1 ) ) /
282 $ log( two ) ) + 1, 0 )
283*
284 IF( info.EQ.0 ) THEN
285 maxwrk = 0
286 liwork = 3*minmn*nlvl + 11*minmn
287 mm = m
288 IF( m.GE.n .AND. m.GE.mnthr ) THEN
289*
290* Path 1a - overdetermined, with many more rows than columns.
291*
292 mm = n
293 maxwrk = max( maxwrk, n+n*ilaenv( 1, 'DGEQRF', ' ', m, n,
294 $ -1, -1 ) )
295 maxwrk = max( maxwrk, n+nrhs*
296 $ ilaenv( 1, 'DORMQR', 'LT', m, nrhs, n, -1 ) )
297 END IF
298 IF( m.GE.n ) THEN
299*
300* Path 1 - overdetermined or exactly determined.
301*
302 maxwrk = max( maxwrk, 3*n+( mm+n )*
303 $ ilaenv( 1, 'DGEBRD', ' ', mm, n, -1, -1 ) )
304 maxwrk = max( maxwrk, 3*n+nrhs*
305 $ ilaenv( 1, 'DORMBR', 'QLT', mm, nrhs, n, -1 ) )
306 maxwrk = max( maxwrk, 3*n+( n-1 )*
307 $ ilaenv( 1, 'DORMBR', 'PLN', n, nrhs, n, -1 ) )
308 wlalsd = 9*n+2*n*smlsiz+8*n*nlvl+n*nrhs+(smlsiz+1)**2
309 maxwrk = max( maxwrk, 3*n+wlalsd )
310 minwrk = max( 3*n+mm, 3*n+nrhs, 3*n+wlalsd )
311 END IF
312 IF( n.GT.m ) THEN
313 wlalsd = 9*m+2*m*smlsiz+8*m*nlvl+m*nrhs+(smlsiz+1)**2
314 IF( n.GE.mnthr ) THEN
315*
316* Path 2a - underdetermined, with many more columns
317* than rows.
318*
319 maxwrk = m + m*ilaenv( 1, 'DGELQF', ' ', m, n, -1, -1 )
320 maxwrk = max( maxwrk, m*m+4*m+2*m*
321 $ ilaenv( 1, 'DGEBRD', ' ', m, m, -1, -1 ) )
322 maxwrk = max( maxwrk, m*m+4*m+nrhs*
323 $ ilaenv( 1, 'DORMBR', 'QLT', m, nrhs, m, -1 ) )
324 maxwrk = max( maxwrk, m*m+4*m+( m-1 )*
325 $ ilaenv( 1, 'DORMBR', 'PLN', m, nrhs, m, -1 ) )
326 IF( nrhs.GT.1 ) THEN
327 maxwrk = max( maxwrk, m*m+m+m*nrhs )
328 ELSE
329 maxwrk = max( maxwrk, m*m+2*m )
330 END IF
331 maxwrk = max( maxwrk, m+nrhs*
332 $ ilaenv( 1, 'DORMLQ', 'LT', n, nrhs, m, -1 ) )
333 maxwrk = max( maxwrk, m*m+4*m+wlalsd )
334! XXX: Ensure the Path 2a case below is triggered. The workspace
335! calculation should use queries for all routines eventually.
336 maxwrk = max( maxwrk,
337 $ 4*m+m*m+max( m, 2*m-4, nrhs, n-3*m ) )
338 ELSE
339*
340* Path 2 - remaining underdetermined cases.
341*
342 maxwrk = 3*m + ( n+m )*ilaenv( 1, 'DGEBRD', ' ', m, n,
343 $ -1, -1 )
344 maxwrk = max( maxwrk, 3*m+nrhs*
345 $ ilaenv( 1, 'DORMBR', 'QLT', m, nrhs, n, -1 ) )
346 maxwrk = max( maxwrk, 3*m+m*
347 $ ilaenv( 1, 'DORMBR', 'PLN', n, nrhs, m, -1 ) )
348 maxwrk = max( maxwrk, 3*m+wlalsd )
349 END IF
350 minwrk = max( 3*m+nrhs, 3*m+m, 3*m+wlalsd )
351 END IF
352 minwrk = min( minwrk, maxwrk )
353 work( 1 ) = maxwrk
354 iwork( 1 ) = liwork
355
356 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
357 info = -12
358 END IF
359 END IF
360*
361 IF( info.NE.0 ) THEN
362 CALL xerbla( 'DGELSD', -info )
363 RETURN
364 ELSE IF( lquery ) THEN
365 GO TO 10
366 END IF
367*
368* Quick return if possible.
369*
370 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
371 rank = 0
372 RETURN
373 END IF
374*
375* Get machine parameters.
376*
377 eps = dlamch( 'P' )
378 sfmin = dlamch( 'S' )
379 smlnum = sfmin / eps
380 bignum = one / smlnum
381 CALL dlabad( smlnum, bignum )
382*
383* Scale A if max entry outside range [SMLNUM,BIGNUM].
384*
385 anrm = dlange( 'M', m, n, a, lda, work )
386 iascl = 0
387 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
388*
389* Scale matrix norm up to SMLNUM.
390*
391 CALL dlascl( 'G', 0, 0, anrm, smlnum, m, n, a, lda, info )
392 iascl = 1
393 ELSE IF( anrm.GT.bignum ) THEN
394*
395* Scale matrix norm down to BIGNUM.
396*
397 CALL dlascl( 'G', 0, 0, anrm, bignum, m, n, a, lda, info )
398 iascl = 2
399 ELSE IF( anrm.EQ.zero ) THEN
400*
401* Matrix all zero. Return zero solution.
402*
403 CALL dlaset( 'F', max( m, n ), nrhs, zero, zero, b, ldb )
404 CALL dlaset( 'F', minmn, 1, zero, zero, s, 1 )
405 rank = 0
406 GO TO 10
407 END IF
408*
409* Scale B if max entry outside range [SMLNUM,BIGNUM].
410*
411 bnrm = dlange( 'M', m, nrhs, b, ldb, work )
412 ibscl = 0
413 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
414*
415* Scale matrix norm up to SMLNUM.
416*
417 CALL dlascl( 'G', 0, 0, bnrm, smlnum, m, nrhs, b, ldb, info )
418 ibscl = 1
419 ELSE IF( bnrm.GT.bignum ) THEN
420*
421* Scale matrix norm down to BIGNUM.
422*
423 CALL dlascl( 'G', 0, 0, bnrm, bignum, m, nrhs, b, ldb, info )
424 ibscl = 2
425 END IF
426*
427* If M < N make sure certain entries of B are zero.
428*
429 IF( m.LT.n )
430 $ CALL dlaset( 'F', n-m, nrhs, zero, zero, b( m+1, 1 ), ldb )
431*
432* Overdetermined case.
433*
434 IF( m.GE.n ) THEN
435*
436* Path 1 - overdetermined or exactly determined.
437*
438 mm = m
439 IF( m.GE.mnthr ) THEN
440*
441* Path 1a - overdetermined, with many more rows than columns.
442*
443 mm = n
444 itau = 1
445 nwork = itau + n
446*
447* Compute A=Q*R.
448* (Workspace: need 2*N, prefer N+N*NB)
449*
450 CALL dgeqrf( m, n, a, lda, work( itau ), work( nwork ),
451 $ lwork-nwork+1, info )
452*
453* Multiply B by transpose(Q).
454* (Workspace: need N+NRHS, prefer N+NRHS*NB)
455*
456 CALL dormqr( 'L', 'T', m, nrhs, n, a, lda, work( itau ), b,
457 $ ldb, work( nwork ), lwork-nwork+1, info )
458*
459* Zero out below R.
460*
461 IF( n.GT.1 ) THEN
462 CALL dlaset( 'L', n-1, n-1, zero, zero, a( 2, 1 ), lda )
463 END IF
464 END IF
465*
466 ie = 1
467 itauq = ie + n
468 itaup = itauq + n
469 nwork = itaup + n
470*
471* Bidiagonalize R in A.
472* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
473*
474 CALL dgebrd( mm, n, a, lda, s, work( ie ), work( itauq ),
475 $ work( itaup ), work( nwork ), lwork-nwork+1,
476 $ info )
477*
478* Multiply B by transpose of left bidiagonalizing vectors of R.
479* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
480*
481 CALL dormbr( 'Q', 'L', 'T', mm, nrhs, n, a, lda, work( itauq ),
482 $ b, ldb, work( nwork ), lwork-nwork+1, info )
483*
484* Solve the bidiagonal least squares problem.
485*
486 CALL dlalsd( 'U', smlsiz, n, nrhs, s, work( ie ), b, ldb,
487 $ rcond, rank, work( nwork ), iwork, info )
488 IF( info.NE.0 ) THEN
489 GO TO 10
490 END IF
491*
492* Multiply B by right bidiagonalizing vectors of R.
493*
494 CALL dormbr( 'P', 'L', 'N', n, nrhs, n, a, lda, work( itaup ),
495 $ b, ldb, work( nwork ), lwork-nwork+1, info )
496*
497 ELSE IF( n.GE.mnthr .AND. lwork.GE.4*m+m*m+
498 $ max( m, 2*m-4, nrhs, n-3*m, wlalsd ) ) THEN
499*
500* Path 2a - underdetermined, with many more columns than rows
501* and sufficient workspace for an efficient algorithm.
502*
503 ldwork = m
504 IF( lwork.GE.max( 4*m+m*lda+max( m, 2*m-4, nrhs, n-3*m ),
505 $ m*lda+m+m*nrhs, 4*m+m*lda+wlalsd ) )ldwork = lda
506 itau = 1
507 nwork = m + 1
508*
509* Compute A=L*Q.
510* (Workspace: need 2*M, prefer M+M*NB)
511*
512 CALL dgelqf( m, n, a, lda, work( itau ), work( nwork ),
513 $ lwork-nwork+1, info )
514 il = nwork
515*
516* Copy L to WORK(IL), zeroing out above its diagonal.
517*
518 CALL dlacpy( 'L', m, m, a, lda, work( il ), ldwork )
519 CALL dlaset( 'U', m-1, m-1, zero, zero, work( il+ldwork ),
520 $ ldwork )
521 ie = il + ldwork*m
522 itauq = ie + m
523 itaup = itauq + m
524 nwork = itaup + m
525*
526* Bidiagonalize L in WORK(IL).
527* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
528*
529 CALL dgebrd( m, m, work( il ), ldwork, s, work( ie ),
530 $ work( itauq ), work( itaup ), work( nwork ),
531 $ lwork-nwork+1, info )
532*
533* Multiply B by transpose of left bidiagonalizing vectors of L.
534* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
535*
536 CALL dormbr( 'Q', 'L', 'T', m, nrhs, m, work( il ), ldwork,
537 $ work( itauq ), b, ldb, work( nwork ),
538 $ lwork-nwork+1, info )
539*
540* Solve the bidiagonal least squares problem.
541*
542 CALL dlalsd( 'U', smlsiz, m, nrhs, s, work( ie ), b, ldb,
543 $ rcond, rank, work( nwork ), iwork, info )
544 IF( info.NE.0 ) THEN
545 GO TO 10
546 END IF
547*
548* Multiply B by right bidiagonalizing vectors of L.
549*
550 CALL dormbr( 'P', 'L', 'N', m, nrhs, m, work( il ), ldwork,
551 $ work( itaup ), b, ldb, work( nwork ),
552 $ lwork-nwork+1, info )
553*
554* Zero out below first M rows of B.
555*
556 CALL dlaset( 'F', n-m, nrhs, zero, zero, b( m+1, 1 ), ldb )
557 nwork = itau + m
558*
559* Multiply transpose(Q) by B.
560* (Workspace: need M+NRHS, prefer M+NRHS*NB)
561*
562 CALL dormlq( 'L', 'T', n, nrhs, m, a, lda, work( itau ), b,
563 $ ldb, work( nwork ), lwork-nwork+1, info )
564*
565 ELSE
566*
567* Path 2 - remaining underdetermined cases.
568*
569 ie = 1
570 itauq = ie + m
571 itaup = itauq + m
572 nwork = itaup + m
573*
574* Bidiagonalize A.
575* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
576*
577 CALL dgebrd( m, n, a, lda, s, work( ie ), work( itauq ),
578 $ work( itaup ), work( nwork ), lwork-nwork+1,
579 $ info )
580*
581* Multiply B by transpose of left bidiagonalizing vectors.
582* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
583*
584 CALL dormbr( 'Q', 'L', 'T', m, nrhs, n, a, lda, work( itauq ),
585 $ b, ldb, work( nwork ), lwork-nwork+1, info )
586*
587* Solve the bidiagonal least squares problem.
588*
589 CALL dlalsd( 'L', smlsiz, m, nrhs, s, work( ie ), b, ldb,
590 $ rcond, rank, work( nwork ), iwork, info )
591 IF( info.NE.0 ) THEN
592 GO TO 10
593 END IF
594*
595* Multiply B by right bidiagonalizing vectors of A.
596*
597 CALL dormbr( 'P', 'L', 'N', n, nrhs, m, a, lda, work( itaup ),
598 $ b, ldb, work( nwork ), lwork-nwork+1, info )
599*
600 END IF
601*
602* Undo scaling.
603*
604 IF( iascl.EQ.1 ) THEN
605 CALL dlascl( 'G', 0, 0, anrm, smlnum, n, nrhs, b, ldb, info )
606 CALL dlascl( 'G', 0, 0, smlnum, anrm, minmn, 1, s, minmn,
607 $ info )
608 ELSE IF( iascl.EQ.2 ) THEN
609 CALL dlascl( 'G', 0, 0, anrm, bignum, n, nrhs, b, ldb, info )
610 CALL dlascl( 'G', 0, 0, bignum, anrm, minmn, 1, s, minmn,
611 $ info )
612 END IF
613 IF( ibscl.EQ.1 ) THEN
614 CALL dlascl( 'G', 0, 0, smlnum, bnrm, n, nrhs, b, ldb, info )
615 ELSE IF( ibscl.EQ.2 ) THEN
616 CALL dlascl( 'G', 0, 0, bignum, bnrm, n, nrhs, b, ldb, info )
617 END IF
618*
619 10 CONTINUE
620 work( 1 ) = maxwrk
621 iwork( 1 ) = liwork
622 RETURN
623*
624* End of DGELSD
625*
626 END
subroutine dlabad(small, large)
DLABAD
Definition dlabad.f:74
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:110
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
DGEBRD
Definition dgebrd.f:205
subroutine dgelqf(m, n, a, lda, tau, work, lwork, info)
DGELQF
Definition dgelqf.f:143
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF
Definition dgeqrf.f:146
subroutine dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices
Definition dgelsd.f:209
subroutine dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMBR
Definition dormbr.f:195
subroutine dlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info)
DLALSD uses the singular value decomposition of A to solve the least squares problem.
Definition dlalsd.f:179
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:167
subroutine dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMLQ
Definition dormlq.f:167
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21