138 SUBROUTINE dgerqf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
145 INTEGER INFO, LDA, LWORK, M, N
148 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
155 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
156 $ MU, NB, NBMIN, NU, NX
173 lquery = ( lwork.EQ.-1 )
176 ELSE IF( n.LT.0 )
THEN
178 ELSE IF( lda.LT.
max( 1, m ) )
THEN
187 nb = ilaenv( 1,
'DGERQF',
' ', m, n, -1, -1 )
192 IF ( .NOT.lquery )
THEN
193 IF( lwork.LE.0 .OR. ( n.GT.0 .AND. lwork.LT.
max( 1, m ) ) )
199 CALL xerbla(
'DGERQF', -info )
201 ELSE IF( lquery )
THEN
214 IF( nb.GT.1 .AND. nb.LT.k )
THEN
218 nx =
max( 0, ilaenv( 3,
'DGERQF',
' ', m, n, -1, -1 ) )
225 IF( lwork.LT.iws )
THEN
231 nbmin =
max( 2, ilaenv( 2,
'DGERQF',
' ', m, n, -1,
237 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
242 ki = ( ( k-nx-1 ) / nb )*nb
245 DO 10 i = k - kk + ki + 1, k - kk + 1, -nb
246 ib =
min( k-i+1, nb )
251 CALL dgerq2( ib, n-k+i+ib-1, a( m-k+i, 1 ), lda, tau( i ),
253 IF( m-k+i.GT.1 )
THEN
258 CALL dlarft(
'Backward',
'Rowwise', n-k+i
259 $ a( m-k+i, 1 ), lda, tau( i ), work, ldwork )
263 CALL dlarfb(
'Right',
'No transpose', 'backward
',
264 $ 'rowwise
', M-K+I-1, N-K+I+IB-1, IB,
265 $ A( M-K+I, 1 ), LDA, WORK, LDWORK, A, LDA,
266 $ WORK( IB+1 ), LDWORK )
269 MU = M - K + I + NB - 1
270 NU = N - K + I + NB - 1
278.GT..AND..GT.
IF( MU0 NU0 )
279 $ CALL DGERQ2( MU, NU, A, LDA, TAU, WORK, IINFO )
subroutine xerbla(srname, info)
XERBLA
subroutine dgerqf(m, n, a, lda, tau, work, lwork, info)
DGERQF
subroutine dgerq2(m, n, a, lda, tau, work, info)
DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.