OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dlasq2.f
Go to the documentation of this file.
1*> \brief \b DLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLASQ2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DLASQ2( N, Z, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, N
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION Z( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DLASQ2 computes all the eigenvalues of the symmetric positive
37*> definite tridiagonal matrix associated with the qd array Z to high
38*> relative accuracy are computed to high relative accuracy, in the
39*> absence of denormalization, underflow and overflow.
40*>
41*> To see the relation of Z to the tridiagonal matrix, let L be a
42*> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
43*> let U be an upper bidiagonal matrix with 1's above and diagonal
44*> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
45*> symmetric tridiagonal to which it is similar.
46*>
47*> Note : DLASQ2 defines a logical variable, IEEE, which is true
48*> on machines which follow ieee-754 floating-point standard in their
49*> handling of infinities and NaNs, and false otherwise. This variable
50*> is passed to DLASQ3.
51*> \endverbatim
52*
53* Arguments:
54* ==========
55*
56*> \param[in] N
57*> \verbatim
58*> N is INTEGER
59*> The number of rows and columns in the matrix. N >= 0.
60*> \endverbatim
61*>
62*> \param[in,out] Z
63*> \verbatim
64*> Z is DOUBLE PRECISION array, dimension ( 4*N )
65*> On entry Z holds the qd array. On exit, entries 1 to N hold
66*> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
67*> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
68*> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
69*> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
70*> shifts that failed.
71*> \endverbatim
72*>
73*> \param[out] INFO
74*> \verbatim
75*> INFO is INTEGER
76*> = 0: successful exit
77*> < 0: if the i-th argument is a scalar and had an illegal
78*> value, then INFO = -i, if the i-th argument is an
79*> array and the j-entry had an illegal value, then
80*> INFO = -(i*100+j)
81*> > 0: the algorithm failed
82*> = 1, a split was marked by a positive value in E
83*> = 2, current block of Z not diagonalized after 100*N
84*> iterations (in inner while loop). On exit Z holds
85*> a qd array with the same eigenvalues as the given Z.
86*> = 3, termination criterion of outer while loop not met
87*> (program created more than N unreduced blocks)
88*> \endverbatim
89*
90* Authors:
91* ========
92*
93*> \author Univ. of Tennessee
94*> \author Univ. of California Berkeley
95*> \author Univ. of Colorado Denver
96*> \author NAG Ltd.
97*
98*> \ingroup auxOTHERcomputational
99*
100*> \par Further Details:
101* =====================
102*>
103*> \verbatim
104*>
105*> Local Variables: I0:N0 defines a current unreduced segment of Z.
106*> The shifts are accumulated in SIGMA. Iteration count is in ITER.
107*> Ping-pong is controlled by PP (alternates between 0 and 1).
108*> \endverbatim
109*>
110* =====================================================================
111 SUBROUTINE dlasq2( N, Z, INFO )
112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, N
119* ..
120* .. Array Arguments ..
121 DOUBLE PRECISION Z( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 DOUBLE PRECISION CBIAS
128 parameter( cbias = 1.50d0 )
129 DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, HUNDRD
130 parameter( zero = 0.0d0, half = 0.5d0, one = 1.0d0,
131 $ two = 2.0d0, four = 4.0d0, hundrd = 100.0d0 )
132* ..
133* .. Local Scalars ..
134 LOGICAL IEEE
135 INTEGER I0, I1, I4, IINFO, IPN4, ITER, IWHILA, IWHILB,
136 $ K, KMIN, N0, N1, NBIG, NDIV, NFAIL, PP, SPLT,
137 $ TTYPE
138 DOUBLE PRECISION D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
139 $ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
140 $ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
141 $ TOL2, TRACE, ZMAX, TEMPE, TEMPQ
142* ..
143* .. External Subroutines ..
144 EXTERNAL dlasq3, dlasrt, xerbla
145* ..
146* .. External Functions ..
147 INTEGER ILAENV
148 DOUBLE PRECISION DLAMCH
149 EXTERNAL dlamch, ilaenv
150* ..
151* .. Intrinsic Functions ..
152 INTRINSIC abs, dble, max, min, sqrt
153* ..
154* .. Executable Statements ..
155*
156* Test the input arguments.
157* (in case DLASQ2 is not called by DLASQ1)
158*
159 info = 0
160 eps = dlamch( 'Precision' )
161 safmin = dlamch( 'Safe minimum' )
162 tol = eps*hundrd
163 tol2 = tol**2
164*
165 IF( n.LT.0 ) THEN
166 info = -1
167 CALL xerbla( 'DLASQ2', 1 )
168 RETURN
169 ELSE IF( n.EQ.0 ) THEN
170 RETURN
171 ELSE IF( n.EQ.1 ) THEN
172*
173* 1-by-1 case.
174*
175 IF( z( 1 ).LT.zero ) THEN
176 info = -201
177 CALL xerbla( 'DLASQ2', 2 )
178 END IF
179 RETURN
180 ELSE IF( n.EQ.2 ) THEN
181*
182* 2-by-2 case.
183*
184 IF( z( 1 ).LT.zero ) THEN
185 info = -201
186 CALL xerbla( 'DLASQ2', 2 )
187 RETURN
188 ELSE IF( z( 2 ).LT.zero ) THEN
189 info = -202
190 CALL xerbla( 'DLASQ2', 2 )
191 RETURN
192 ELSE IF( z( 3 ).LT.zero ) THEN
193 info = -203
194 CALL xerbla( 'DLASQ2', 2 )
195 RETURN
196 ELSE IF( z( 3 ).GT.z( 1 ) ) THEN
197 d = z( 3 )
198 z( 3 ) = z( 1 )
199 z( 1 ) = d
200 END IF
201 z( 5 ) = z( 1 ) + z( 2 ) + z( 3 )
202 IF( z( 2 ).GT.z( 3 )*tol2 ) THEN
203 t = half*( ( z( 1 )-z( 3 ) )+z( 2 ) )
204 s = z( 3 )*( z( 2 ) / t )
205 IF( s.LE.t ) THEN
206 s = z( 3 )*( z( 2 ) / ( t*( one+sqrt( one+s / t ) ) ) )
207 ELSE
208 s = z( 3 )*( z( 2 ) / ( t+sqrt( t )*sqrt( t+s ) ) )
209 END IF
210 t = z( 1 ) + ( s+z( 2 ) )
211 z( 3 ) = z( 3 )*( z( 1 ) / t )
212 z( 1 ) = t
213 END IF
214 z( 2 ) = z( 3 )
215 z( 6 ) = z( 2 ) + z( 1 )
216 RETURN
217 END IF
218*
219* Check for negative data and compute sums of q's and e's.
220*
221 z( 2*n ) = zero
222 emin = z( 2 )
223 qmax = zero
224 zmax = zero
225 d = zero
226 e = zero
227*
228 DO 10 k = 1, 2*( n-1 ), 2
229 IF( z( k ).LT.zero ) THEN
230 info = -( 200+k )
231 CALL xerbla( 'dlasq2', 2 )
232 RETURN
233.LT. ELSE IF( Z( K+1 )ZERO ) THEN
234 INFO = -( 200+K+1 )
235 CALL XERBLA( 'dlasq2', 2 )
236 RETURN
237 END IF
238 D = D + Z( K )
239 E = E + Z( K+1 )
240 QMAX = MAX( QMAX, Z( K ) )
241 EMIN = MIN( EMIN, Z( K+1 ) )
242 ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
243 10 CONTINUE
244.LT. IF( Z( 2*N-1 )ZERO ) THEN
245 INFO = -( 200+2*N-1 )
246 CALL XERBLA( 'dlasq2', 2 )
247 RETURN
248 END IF
249 D = D + Z( 2*N-1 )
250 QMAX = MAX( QMAX, Z( 2*N-1 ) )
251 ZMAX = MAX( QMAX, ZMAX )
252*
253* Check for diagonality.
254*
255.EQ. IF( EZERO ) THEN
256 DO 20 K = 2, N
257 Z( K ) = Z( 2*K-1 )
258 20 CONTINUE
259 CALL DLASRT( 'd', N, Z, IINFO )
260 Z( 2*N-1 ) = D
261 RETURN
262 END IF
263*
264 TRACE = D + E
265*
266* Check for zero data.
267*
268.EQ. IF( TRACEZERO ) THEN
269 Z( 2*N-1 ) = ZERO
270 RETURN
271 END IF
272*
273* Check whether the machine is IEEE conformable.
274*
275 IEEE = ( ILAENV( 10, 'dlasq2', 'n.EQ.', 1, 2, 3, 4 )1 )
276*
277* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
278*
279 DO 30 K = 2*N, 2, -2
280 Z( 2*K ) = ZERO
281 Z( 2*K-1 ) = Z( K )
282 Z( 2*K-2 ) = ZERO
283 Z( 2*K-3 ) = Z( K-1 )
284 30 CONTINUE
285*
286 I0 = 1
287 N0 = N
288*
289* Reverse the qd-array, if warranted.
290*
291.LT. IF( CBIAS*Z( 4*I0-3 )Z( 4*N0-3 ) ) THEN
292 IPN4 = 4*( I0+N0 )
293 DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
294 TEMP = Z( I4-3 )
295 Z( I4-3 ) = Z( IPN4-I4-3 )
296 Z( IPN4-I4-3 ) = TEMP
297 TEMP = Z( I4-1 )
298 Z( I4-1 ) = Z( IPN4-I4-5 )
299 Z( IPN4-I4-5 ) = TEMP
300 40 CONTINUE
301 END IF
302*
303* Initial split checking via dqd and Li's test.
304*
305 PP = 0
306*
307 DO 80 K = 1, 2
308*
309 D = Z( 4*N0+PP-3 )
310 DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
311.LE. IF( Z( I4-1 )TOL2*D ) THEN
312 Z( I4-1 ) = -ZERO
313 D = Z( I4-3 )
314 ELSE
315 D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
316 END IF
317 50 CONTINUE
318*
319* dqd maps Z to ZZ plus Li's test.
320*
321 EMIN = Z( 4*I0+PP+1 )
322 D = Z( 4*I0+PP-3 )
323 DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
324 Z( I4-2*PP-2 ) = D + Z( I4-1 )
325.LE. IF( Z( I4-1 )TOL2*D ) THEN
326 Z( I4-1 ) = -ZERO
327 Z( I4-2*PP-2 ) = D
328 Z( I4-2*PP ) = ZERO
329 D = Z( I4+1 )
330.LT..AND. ELSE IF( SAFMIN*Z( I4+1 )Z( I4-2*PP-2 )
331.LT. $ SAFMIN*Z( I4-2*PP-2 )Z( I4+1 ) ) THEN
332 TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
333 Z( I4-2*PP ) = Z( I4-1 )*TEMP
334 D = D*TEMP
335 ELSE
336 Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
337 D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
338 END IF
339 EMIN = MIN( EMIN, Z( I4-2*PP ) )
340 60 CONTINUE
341 Z( 4*N0-PP-2 ) = D
342*
343* Now find qmax.
344*
345 QMAX = Z( 4*I0-PP-2 )
346 DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
347 QMAX = MAX( QMAX, Z( I4 ) )
348 70 CONTINUE
349*
350* Prepare for the next iteration on K.
351*
352 PP = 1 - PP
353 80 CONTINUE
354*
355* Initialise variables to pass to DLASQ3.
356*
357 TTYPE = 0
358 DMIN1 = ZERO
359 DMIN2 = ZERO
360 DN = ZERO
361 DN1 = ZERO
362 DN2 = ZERO
363 G = ZERO
364 TAU = ZERO
365*
366 ITER = 2
367 NFAIL = 0
368 NDIV = 2*( N0-I0 )
369*
370 DO 160 IWHILA = 1, N + 1
371.LT. IF( N01 )
372 $ GO TO 170
373*
374* While array unfinished do
375*
376* E(N0) holds the value of SIGMA when submatrix in I0:N0
377* splits from the rest of the array, but is negated.
378*
379 DESIG = ZERO
380.EQ. IF( N0N ) THEN
381 SIGMA = ZERO
382 ELSE
383 SIGMA = -Z( 4*N0-1 )
384 END IF
385.LT. IF( SIGMAZERO ) THEN
386 INFO = 1
387 RETURN
388 END IF
389*
390* Find last unreduced submatrix's top index I0, find QMAX and
391* EMIN. Find Gershgorin-type bound if Q's much greater than E's.
392*
393 EMAX = ZERO
394.GT. IF( N0I0 ) THEN
395 EMIN = ABS( Z( 4*N0-5 ) )
396 ELSE
397 EMIN = ZERO
398 END IF
399 QMIN = Z( 4*N0-3 )
400 QMAX = QMIN
401 DO 90 I4 = 4*N0, 8, -4
402.LE. IF( Z( I4-5 )ZERO )
403 $ GO TO 100
404.GE. IF( QMINFOUR*EMAX ) THEN
405 QMIN = MIN( QMIN, Z( I4-3 ) )
406 EMAX = MAX( EMAX, Z( I4-5 ) )
407 END IF
408 QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
409 EMIN = MIN( EMIN, Z( I4-5 ) )
410 90 CONTINUE
411 I4 = 4
412*
413 100 CONTINUE
414 I0 = I4 / 4
415 PP = 0
416*
417.GT. IF( N0-I01 ) THEN
418 DEE = Z( 4*I0-3 )
419 DEEMIN = DEE
420 KMIN = I0
421 DO 110 I4 = 4*I0+1, 4*N0-3, 4
422 DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
423.LE. IF( DEEDEEMIN ) THEN
424 DEEMIN = DEE
425 KMIN = ( I4+3 )/4
426 END IF
427 110 CONTINUE
428.LT..AND. IF( (KMIN-I0)*2N0-KMIN
429.LE. $ DEEMINHALF*Z(4*N0-3) ) THEN
430 IPN4 = 4*( I0+N0 )
431 PP = 2
432 DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
433 TEMP = Z( I4-3 )
434 Z( I4-3 ) = Z( IPN4-I4-3 )
435 Z( IPN4-I4-3 ) = TEMP
436 TEMP = Z( I4-2 )
437 Z( I4-2 ) = Z( IPN4-I4-2 )
438 Z( IPN4-I4-2 ) = TEMP
439 TEMP = Z( I4-1 )
440 Z( I4-1 ) = Z( IPN4-I4-5 )
441 Z( IPN4-I4-5 ) = TEMP
442 TEMP = Z( I4 )
443 Z( I4 ) = Z( IPN4-I4-4 )
444 Z( IPN4-I4-4 ) = TEMP
445 120 CONTINUE
446 END IF
447 END IF
448*
449* Put -(initial shift) into DMIN.
450*
451 DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
452*
453* Now I0:N0 is unreduced.
454* PP = 0 for ping, PP = 1 for pong.
455* PP = 2 indicates that flipping was applied to the Z array and
456* and that the tests for deflation upon entry in DLASQ3
457* should not be performed.
458*
459 NBIG = 100*( N0-I0+1 )
460 DO 140 IWHILB = 1, NBIG
461.GT. IF( I0N0 )
462 $ GO TO 150
463*
464* While submatrix unfinished take a good dqds step.
465*
466 CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
467 $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
468 $ DN2, G, TAU )
469*
470 PP = 1 - PP
471*
472* When EMIN is very small check for splits.
473*
474.EQ..AND..GE. IF( PP0 N0-I03 ) THEN
475.LE..OR. IF( Z( 4*N0 )TOL2*QMAX
476.LE. $ Z( 4*N0-1 )TOL2*SIGMA ) THEN
477 SPLT = I0 - 1
478 QMAX = Z( 4*I0-3 )
479 EMIN = Z( 4*I0-1 )
480 OLDEMN = Z( 4*I0 )
481 DO 130 I4 = 4*I0, 4*( N0-3 ), 4
482.LE..OR. IF( Z( I4 )TOL2*Z( I4-3 )
483.LE. $ Z( I4-1 )TOL2*SIGMA ) THEN
484 Z( I4-1 ) = -SIGMA
485 SPLT = I4 / 4
486 QMAX = ZERO
487 EMIN = Z( I4+3 )
488 OLDEMN = Z( I4+4 )
489 ELSE
490 QMAX = MAX( QMAX, Z( I4+1 ) )
491 EMIN = MIN( EMIN, Z( I4-1 ) )
492 OLDEMN = MIN( OLDEMN, Z( I4 ) )
493 END IF
494 130 CONTINUE
495 Z( 4*N0-1 ) = EMIN
496 Z( 4*N0 ) = OLDEMN
497 I0 = SPLT + 1
498 END IF
499 END IF
500*
501 140 CONTINUE
502*
503 INFO = 2
504*
505* Maximum number of iterations exceeded, restore the shift
506* SIGMA and place the new d's and e's in a qd array.
507* This might need to be done for several blocks
508*
509 I1 = I0
510 N1 = N0
511 145 CONTINUE
512 TEMPQ = Z( 4*I0-3 )
513 Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
514 DO K = I0+1, N0
515 TEMPE = Z( 4*K-5 )
516 Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
517 TEMPQ = Z( 4*K-3 )
518 Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
519 END DO
520*
521* Prepare to do this on the previous block if there is one
522*
523.GT. IF( I11 ) THEN
524 N1 = I1-1
525.GE..AND..GE. DO WHILE( ( I12 ) ( Z(4*I1-5)ZERO ) )
526 I1 = I1 - 1
527 END DO
528 SIGMA = -Z(4*N1-1)
529 GO TO 145
530 END IF
531
532 DO K = 1, N
533 Z( 2*K-1 ) = Z( 4*K-3 )
534*
535* Only the block 1..N0 is unfinished. The rest of the e's
536* must be essentially zero, although sometimes other data
537* has been stored in them.
538*
539.LT. IF( KN0 ) THEN
540 Z( 2*K ) = Z( 4*K-1 )
541 ELSE
542 Z( 2*K ) = 0
543 END IF
544 END DO
545 RETURN
546*
547* end IWHILB
548*
549 150 CONTINUE
550*
551 160 CONTINUE
552*
553 INFO = 3
554 RETURN
555*
556* end IWHILA
557*
558 170 CONTINUE
559*
560* Move q's to the front.
561*
562 DO 180 K = 2, N
563 Z( K ) = Z( 4*K-3 )
564 180 CONTINUE
565*
566* Sort and compute sum of eigenvalues.
567*
568 CALL DLASRT( 'd', N, Z, IINFO )
569*
570 E = ZERO
571 DO 190 K = N, 1, -1
572 E = E + Z( K )
573 190 CONTINUE
574*
575* Store trace, sum(eigenvalues) and information on performance.
576*
577 Z( 2*N+1 ) = TRACE
578 Z( 2*N+2 ) = E
579 Z( 2*N+3 ) = DBLE( ITER )
580 Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )
581 Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )
582 RETURN
583*
584* End of DLASQ2
585*
586 END
subroutine dlasrt(id, n, d, info)
DLASRT sorts numbers in increasing or decreasing order.
Definition dlasrt.f:88
subroutine dlasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee, ttype, dmin1, dmin2, dn, dn1, dn2, g, tau)
DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr.
Definition dlasq3.f:182
subroutine dlasq2(n, z, info)
DLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated ...
Definition dlasq2.f:112
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21