OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dsbevd_2stage.f
Go to the documentation of this file.
1*> \brief <b> DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* @precisions fortran d -> s
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download DSBEVD_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE DSBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
24* WORK, LWORK, IWORK, LIWORK, INFO )
25*
26* IMPLICIT NONE
27*
28* .. Scalar Arguments ..
29* CHARACTER JOBZ, UPLO
30* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
31* ..
32* .. Array Arguments ..
33* INTEGER IWORK( * )
34* DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> DSBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
44*> a real symmetric band matrix A using the 2stage technique for
45*> the reduction to tridiagonal. If eigenvectors are desired, it uses
46*> a divide and conquer algorithm.
47*>
48*> The divide and conquer algorithm makes very mild assumptions about
49*> floating point arithmetic. It will work on machines with a guard
50*> digit in add/subtract, or on those binary machines without guard
51*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
52*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
53*> without guard digits, but we know of none.
54*> \endverbatim
55*
56* Arguments:
57* ==========
58*
59*> \param[in] JOBZ
60*> \verbatim
61*> JOBZ is CHARACTER*1
62*> = 'N': Compute eigenvalues only;
63*> = 'V': Compute eigenvalues and eigenvectors.
64*> Not available in this release.
65*> \endverbatim
66*>
67*> \param[in] UPLO
68*> \verbatim
69*> UPLO is CHARACTER*1
70*> = 'U': Upper triangle of A is stored;
71*> = 'L': Lower triangle of A is stored.
72*> \endverbatim
73*>
74*> \param[in] N
75*> \verbatim
76*> N is INTEGER
77*> The order of the matrix A. N >= 0.
78*> \endverbatim
79*>
80*> \param[in] KD
81*> \verbatim
82*> KD is INTEGER
83*> The number of superdiagonals of the matrix A if UPLO = 'U',
84*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
85*> \endverbatim
86*>
87*> \param[in,out] AB
88*> \verbatim
89*> AB is DOUBLE PRECISION array, dimension (LDAB, N)
90*> On entry, the upper or lower triangle of the symmetric band
91*> matrix A, stored in the first KD+1 rows of the array. The
92*> j-th column of A is stored in the j-th column of the array AB
93*> as follows:
94*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
95*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
96*>
97*> On exit, AB is overwritten by values generated during the
98*> reduction to tridiagonal form. If UPLO = 'U', the first
99*> superdiagonal and the diagonal of the tridiagonal matrix T
100*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
101*> the diagonal and first subdiagonal of T are returned in the
102*> first two rows of AB.
103*> \endverbatim
104*>
105*> \param[in] LDAB
106*> \verbatim
107*> LDAB is INTEGER
108*> The leading dimension of the array AB. LDAB >= KD + 1.
109*> \endverbatim
110*>
111*> \param[out] W
112*> \verbatim
113*> W is DOUBLE PRECISION array, dimension (N)
114*> If INFO = 0, the eigenvalues in ascending order.
115*> \endverbatim
116*>
117*> \param[out] Z
118*> \verbatim
119*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
120*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
121*> eigenvectors of the matrix A, with the i-th column of Z
122*> holding the eigenvector associated with W(i).
123*> If JOBZ = 'N', then Z is not referenced.
124*> \endverbatim
125*>
126*> \param[in] LDZ
127*> \verbatim
128*> LDZ is INTEGER
129*> The leading dimension of the array Z. LDZ >= 1, and if
130*> JOBZ = 'V', LDZ >= max(1,N).
131*> \endverbatim
132*>
133*> \param[out] WORK
134*> \verbatim
135*> WORK is DOUBLE PRECISION array, dimension LWORK
136*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
137*> \endverbatim
138*>
139*> \param[in] LWORK
140*> \verbatim
141*> LWORK is INTEGER
142*> The length of the array WORK. LWORK >= 1, when N <= 1;
143*> otherwise
144*> If JOBZ = 'N' and N > 1, LWORK must be queried.
145*> LWORK = MAX(1, dimension) where
146*> dimension = (2KD+1)*N + KD*NTHREADS + N
147*> where KD is the size of the band.
148*> NTHREADS is the number of threads used when
149*> openMP compilation is enabled, otherwise =1.
150*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
151*>
152*> If LWORK = -1, then a workspace query is assumed; the routine
153*> only calculates the optimal sizes of the WORK and IWORK
154*> arrays, returns these values as the first entries of the WORK
155*> and IWORK arrays, and no error message related to LWORK or
156*> LIWORK is issued by XERBLA.
157*> \endverbatim
158*>
159*> \param[out] IWORK
160*> \verbatim
161*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
162*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
163*> \endverbatim
164*>
165*> \param[in] LIWORK
166*> \verbatim
167*> LIWORK is INTEGER
168*> The dimension of the array IWORK.
169*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
170*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
171*>
172*> If LIWORK = -1, then a workspace query is assumed; the
173*> routine only calculates the optimal sizes of the WORK and
174*> IWORK arrays, returns these values as the first entries of
175*> the WORK and IWORK arrays, and no error message related to
176*> LWORK or LIWORK is issued by XERBLA.
177*> \endverbatim
178*>
179*> \param[out] INFO
180*> \verbatim
181*> INFO is INTEGER
182*> = 0: successful exit
183*> < 0: if INFO = -i, the i-th argument had an illegal value
184*> > 0: if INFO = i, the algorithm failed to converge; i
185*> off-diagonal elements of an intermediate tridiagonal
186*> form did not converge to zero.
187*> \endverbatim
188*
189* Authors:
190* ========
191*
192*> \author Univ. of Tennessee
193*> \author Univ. of California Berkeley
194*> \author Univ. of Colorado Denver
195*> \author NAG Ltd.
196*
197*> \ingroup doubleOTHEReigen
198*
199*> \par Further Details:
200* =====================
201*>
202*> \verbatim
203*>
204*> All details about the 2stage techniques are available in:
205*>
206*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
207*> Parallel reduction to condensed forms for symmetric eigenvalue problems
208*> using aggregated fine-grained and memory-aware kernels. In Proceedings
209*> of 2011 International Conference for High Performance Computing,
210*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
211*> Article 8 , 11 pages.
212*> http://doi.acm.org/10.1145/2063384.2063394
213*>
214*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
215*> An improved parallel singular value algorithm and its implementation
216*> for multicore hardware, In Proceedings of 2013 International Conference
217*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
218*> Denver, Colorado, USA, 2013.
219*> Article 90, 12 pages.
220*> http://doi.acm.org/10.1145/2503210.2503292
221*>
222*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
223*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
224*> calculations based on fine-grained memory aware tasks.
225*> International Journal of High Performance Computing Applications.
226*> Volume 28 Issue 2, Pages 196-209, May 2014.
227*> http://hpc.sagepub.com/content/28/2/196
228*>
229*> \endverbatim
230*
231* =====================================================================
232 SUBROUTINE dsbevd_2stage( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
233 $ WORK, LWORK, IWORK, LIWORK, INFO )
234*
235 IMPLICIT NONE
236*
237* -- LAPACK driver routine --
238* -- LAPACK is a software package provided by Univ. of Tennessee, --
239* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
240*
241* .. Scalar Arguments ..
242 CHARACTER JOBZ, UPLO
243 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
244* ..
245* .. Array Arguments ..
246 INTEGER IWORK( * )
247 DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
248* ..
249*
250* =====================================================================
251*
252* .. Parameters ..
253 DOUBLE PRECISION ZERO, ONE
254 parameter( zero = 0.0d+0, one = 1.0d+0 )
255* ..
256* .. Local Scalars ..
257 LOGICAL LOWER, LQUERY, WANTZ
258 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
259 $ llwork, lwmin, lhtrd, lwtrd, ib, indhous,
260 $ llwrk2
261 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
262 $ smlnum
263* ..
264* .. External Functions ..
265 LOGICAL LSAME
266 INTEGER ILAENV2STAGE
267 DOUBLE PRECISION DLAMCH, DLANSB
268 EXTERNAL lsame, dlamch, dlansb, ilaenv2stage
269* ..
270* .. External Subroutines ..
271 EXTERNAL dgemm, dlacpy, dlascl, dscal, dstedc,
273* ..
274* .. Intrinsic Functions ..
275 INTRINSIC sqrt
276* ..
277* .. Executable Statements ..
278*
279* Test the input parameters.
280*
281 wantz = lsame( jobz, 'V' )
282 lower = lsame( uplo, 'L' )
283 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
284*
285 info = 0
286 IF( n.LE.1 ) THEN
287 liwmin = 1
288 lwmin = 1
289 ELSE
290 ib = ilaenv2stage( 2, 'DSYTRD_SB2ST', jobz, n, kd, -1, -1 )
291 lhtrd = ilaenv2stage( 3, 'DSYTRD_SB2ST', jobz, n, kd, ib, -1 )
292 lwtrd = ilaenv2stage( 4, 'DSYTRD_SB2ST', jobz, n, kd, ib, -1 )
293 IF( wantz ) THEN
294 liwmin = 3 + 5*n
295 lwmin = 1 + 5*n + 2*n**2
296 ELSE
297 liwmin = 1
298 lwmin = max( 2*n, n+lhtrd+lwtrd )
299 END IF
300 END IF
301 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
302 info = -1
303 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
304 info = -2
305 ELSE IF( n.LT.0 ) THEN
306 info = -3
307 ELSE IF( kd.LT.0 ) THEN
308 info = -4
309 ELSE IF( ldab.LT.kd+1 ) THEN
310 info = -6
311 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
312 info = -9
313 END IF
314*
315 IF( info.EQ.0 ) THEN
316 work( 1 ) = lwmin
317 iwork( 1 ) = liwmin
318*
319 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
320 info = -11
321 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
322 info = -13
323 END IF
324 END IF
325*
326 IF( info.NE.0 ) THEN
327 CALL xerbla( 'DSBEVD_2STAGE', -info )
328 RETURN
329 ELSE IF( lquery ) THEN
330 RETURN
331 END IF
332*
333* Quick return if possible
334*
335 IF( n.EQ.0 )
336 $ RETURN
337*
338 IF( n.EQ.1 ) THEN
339 w( 1 ) = ab( 1, 1 )
340 IF( wantz )
341 $ z( 1, 1 ) = one
342 RETURN
343 END IF
344*
345* Get machine constants.
346*
347 safmin = dlamch( 'Safe minimum' )
348 eps = dlamch( 'Precision' )
349 smlnum = safmin / eps
350 bignum = one / smlnum
351 rmin = sqrt( smlnum )
352 rmax = sqrt( bignum )
353*
354* Scale matrix to allowable range, if necessary.
355*
356 anrm = dlansb( 'M', uplo, n, kd, ab, ldab, work )
357 iscale = 0
358 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
359 iscale = 1
360 sigma = rmin / anrm
361 ELSE IF( anrm.GT.rmax ) THEN
362 iscale = 1
363 sigma = rmax / anrm
364 END IF
365 IF( iscale.EQ.1 ) THEN
366 IF( lower ) THEN
367 CALL dlascl( 'B', kd, kd, one, sigma, n, n, ab, ldab, info )
368 ELSE
369 CALL dlascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab, info )
370 END IF
371 END IF
372*
373* Call DSYTRD_SB2ST to reduce band symmetric matrix to tridiagonal form.
374*
375 inde = 1
376 indhous = inde + n
377 indwrk = indhous + lhtrd
378 llwork = lwork - indwrk + 1
379 indwk2 = indwrk + n*n
380 llwrk2 = lwork - indwk2 + 1
381*
382 CALL dsytrd_sb2st( "N", jobz, uplo, n, kd, ab, ldab, w,
383 $ work( inde ), work( indhous ), lhtrd,
384 $ work( indwrk ), llwork, iinfo )
385*
386* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
387*
388 IF( .NOT.wantz ) THEN
389 CALL dsterf( n, w, work( inde ), info )
390 ELSE
391 CALL dstedc( 'I', n, w, work( inde ), work( indwrk ), n,
392 $ work( indwk2 ), llwrk2, iwork, liwork, info )
393 CALL dgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ), n,
394 $ zero, work( indwk2 ), n )
395 CALL dlacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
396 END IF
397*
398* If matrix was scaled, then rescale eigenvalues appropriately.
399*
400 IF( iscale.EQ.1 )
401 $ CALL dscal( n, one / sigma, w, 1 )
402*
403 work( 1 ) = lwmin
404 iwork( 1 ) = liwmin
405 RETURN
406*
407* End of DSBEVD_2STAGE
408*
409 END
subroutine dsytrd_sb2st(stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info)
DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:188
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dsbevd_2stage(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:187
#define max(a, b)
Definition macros.h:21