OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dsbgvd.f
Go to the documentation of this file.
1*> \brief \b DSBGVD
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSBGVD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
22* Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER JOBZ, UPLO
26* INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
27* ..
28* .. Array Arguments ..
29* INTEGER IWORK( * )
30* DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ),
31* $ WORK( * ), Z( LDZ, * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
41*> of a real generalized symmetric-definite banded eigenproblem, of the
42*> form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and
43*> banded, and B is also positive definite. If eigenvectors are
44*> desired, it uses a divide and conquer algorithm.
45*>
46*> The divide and conquer algorithm makes very mild assumptions about
47*> floating point arithmetic. It will work on machines with a guard
48*> digit in add/subtract, or on those binary machines without guard
49*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
50*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
51*> without guard digits, but we know of none.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] JOBZ
58*> \verbatim
59*> JOBZ is CHARACTER*1
60*> = 'N': Compute eigenvalues only;
61*> = 'V': Compute eigenvalues and eigenvectors.
62*> \endverbatim
63*>
64*> \param[in] UPLO
65*> \verbatim
66*> UPLO is CHARACTER*1
67*> = 'U': Upper triangles of A and B are stored;
68*> = 'L': Lower triangles of A and B are stored.
69*> \endverbatim
70*>
71*> \param[in] N
72*> \verbatim
73*> N is INTEGER
74*> The order of the matrices A and B. N >= 0.
75*> \endverbatim
76*>
77*> \param[in] KA
78*> \verbatim
79*> KA is INTEGER
80*> The number of superdiagonals of the matrix A if UPLO = 'U',
81*> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
82*> \endverbatim
83*>
84*> \param[in] KB
85*> \verbatim
86*> KB is INTEGER
87*> The number of superdiagonals of the matrix B if UPLO = 'U',
88*> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
89*> \endverbatim
90*>
91*> \param[in,out] AB
92*> \verbatim
93*> AB is DOUBLE PRECISION array, dimension (LDAB, N)
94*> On entry, the upper or lower triangle of the symmetric band
95*> matrix A, stored in the first ka+1 rows of the array. The
96*> j-th column of A is stored in the j-th column of the array AB
97*> as follows:
98*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
99*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
100*>
101*> On exit, the contents of AB are destroyed.
102*> \endverbatim
103*>
104*> \param[in] LDAB
105*> \verbatim
106*> LDAB is INTEGER
107*> The leading dimension of the array AB. LDAB >= KA+1.
108*> \endverbatim
109*>
110*> \param[in,out] BB
111*> \verbatim
112*> BB is DOUBLE PRECISION array, dimension (LDBB, N)
113*> On entry, the upper or lower triangle of the symmetric band
114*> matrix B, stored in the first kb+1 rows of the array. The
115*> j-th column of B is stored in the j-th column of the array BB
116*> as follows:
117*> if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
118*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
119*>
120*> On exit, the factor S from the split Cholesky factorization
121*> B = S**T*S, as returned by DPBSTF.
122*> \endverbatim
123*>
124*> \param[in] LDBB
125*> \verbatim
126*> LDBB is INTEGER
127*> The leading dimension of the array BB. LDBB >= KB+1.
128*> \endverbatim
129*>
130*> \param[out] W
131*> \verbatim
132*> W is DOUBLE PRECISION array, dimension (N)
133*> If INFO = 0, the eigenvalues in ascending order.
134*> \endverbatim
135*>
136*> \param[out] Z
137*> \verbatim
138*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
139*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
140*> eigenvectors, with the i-th column of Z holding the
141*> eigenvector associated with W(i). The eigenvectors are
142*> normalized so Z**T*B*Z = I.
143*> If JOBZ = 'N', then Z is not referenced.
144*> \endverbatim
145*>
146*> \param[in] LDZ
147*> \verbatim
148*> LDZ is INTEGER
149*> The leading dimension of the array Z. LDZ >= 1, and if
150*> JOBZ = 'V', LDZ >= max(1,N).
151*> \endverbatim
152*>
153*> \param[out] WORK
154*> \verbatim
155*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
156*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
157*> \endverbatim
158*>
159*> \param[in] LWORK
160*> \verbatim
161*> LWORK is INTEGER
162*> The dimension of the array WORK.
163*> If N <= 1, LWORK >= 1.
164*> If JOBZ = 'N' and N > 1, LWORK >= 2*N.
165*> If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
166*>
167*> If LWORK = -1, then a workspace query is assumed; the routine
168*> only calculates the optimal sizes of the WORK and IWORK
169*> arrays, returns these values as the first entries of the WORK
170*> and IWORK arrays, and no error message related to LWORK or
171*> LIWORK is issued by XERBLA.
172*> \endverbatim
173*>
174*> \param[out] IWORK
175*> \verbatim
176*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
177*> On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
178*> \endverbatim
179*>
180*> \param[in] LIWORK
181*> \verbatim
182*> LIWORK is INTEGER
183*> The dimension of the array IWORK.
184*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
185*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
186*>
187*> If LIWORK = -1, then a workspace query is assumed; the
188*> routine only calculates the optimal sizes of the WORK and
189*> IWORK arrays, returns these values as the first entries of
190*> the WORK and IWORK arrays, and no error message related to
191*> LWORK or LIWORK is issued by XERBLA.
192*> \endverbatim
193*>
194*> \param[out] INFO
195*> \verbatim
196*> INFO is INTEGER
197*> = 0: successful exit
198*> < 0: if INFO = -i, the i-th argument had an illegal value
199*> > 0: if INFO = i, and i is:
200*> <= N: the algorithm failed to converge:
201*> i off-diagonal elements of an intermediate
202*> tridiagonal form did not converge to zero;
203*> > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF
204*> returned INFO = i: B is not positive definite.
205*> The factorization of B could not be completed and
206*> no eigenvalues or eigenvectors were computed.
207*> \endverbatim
208*
209* Authors:
210* ========
211*
212*> \author Univ. of Tennessee
213*> \author Univ. of California Berkeley
214*> \author Univ. of Colorado Denver
215*> \author NAG Ltd.
216*
217*> \ingroup doubleOTHEReigen
218*
219*> \par Contributors:
220* ==================
221*>
222*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
223*
224* =====================================================================
225 SUBROUTINE dsbgvd( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
226 $ Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
227*
228* -- LAPACK driver routine --
229* -- LAPACK is a software package provided by Univ. of Tennessee, --
230* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
231*
232* .. Scalar Arguments ..
233 CHARACTER JOBZ, UPLO
234 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
235* ..
236* .. Array Arguments ..
237 INTEGER IWORK( * )
238 DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ),
239 $ work( * ), z( ldz, * )
240* ..
241*
242* =====================================================================
243*
244* .. Parameters ..
245 DOUBLE PRECISION ONE, ZERO
246 parameter( one = 1.0d+0, zero = 0.0d+0 )
247* ..
248* .. Local Scalars ..
249 LOGICAL LQUERY, UPPER, WANTZ
250 CHARACTER VECT
251 INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
252 $ lwmin
253* ..
254* .. External Functions ..
255 LOGICAL LSAME
256 EXTERNAL lsame
257* ..
258* .. External Subroutines ..
259 EXTERNAL dgemm, dlacpy, dpbstf, dsbgst, dsbtrd, dstedc,
260 $ dsterf, xerbla
261* ..
262* .. Executable Statements ..
263*
264* Test the input parameters.
265*
266 wantz = lsame( jobz, 'V' )
267 upper = lsame( uplo, 'u' )
268.EQ..OR..EQ. LQUERY = ( LWORK-1 LIWORK-1 )
269*
270 INFO = 0
271.LE. IF( N1 ) THEN
272 LIWMIN = 1
273 LWMIN = 1
274 ELSE IF( WANTZ ) THEN
275 LIWMIN = 3 + 5*N
276 LWMIN = 1 + 5*N + 2*N**2
277 ELSE
278 LIWMIN = 1
279 LWMIN = 2*N
280 END IF
281*
282.NOT..OR. IF( ( WANTZ LSAME( JOBZ, 'n' ) ) ) THEN
283 INFO = -1
284.NOT..OR. ELSE IF( ( UPPER LSAME( UPLO, 'l' ) ) ) THEN
285 INFO = -2
286.LT. ELSE IF( N0 ) THEN
287 INFO = -3
288.LT. ELSE IF( KA0 ) THEN
289 INFO = -4
290.LT..OR..GT. ELSE IF( KB0 KBKA ) THEN
291 INFO = -5
292.LT. ELSE IF( LDABKA+1 ) THEN
293 INFO = -7
294.LT. ELSE IF( LDBBKB+1 ) THEN
295 INFO = -9
296.LT..OR..AND..LT. ELSE IF( LDZ1 ( WANTZ LDZN ) ) THEN
297 INFO = -12
298 END IF
299*
300.EQ. IF( INFO0 ) THEN
301 WORK( 1 ) = LWMIN
302 IWORK( 1 ) = LIWMIN
303*
304.LT..AND..NOT. IF( LWORKLWMIN LQUERY ) THEN
305 INFO = -14
306.LT..AND..NOT. ELSE IF( LIWORKLIWMIN LQUERY ) THEN
307 INFO = -16
308 END IF
309 END IF
310*
311.NE. IF( INFO0 ) THEN
312 CALL XERBLA( 'dsbgvd', -INFO )
313 RETURN
314 ELSE IF( LQUERY ) THEN
315 RETURN
316 END IF
317*
318* Quick return if possible
319*
320.EQ. IF( N0 )
321 $ RETURN
322*
323* Form a split Cholesky factorization of B.
324*
325 CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
326.NE. IF( INFO0 ) THEN
327 INFO = N + INFO
328 RETURN
329 END IF
330*
331* Transform problem to standard eigenvalue problem.
332*
333 INDE = 1
334 INDWRK = INDE + N
335 INDWK2 = INDWRK + N*N
336 LLWRK2 = LWORK - INDWK2 + 1
337 CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
338 $ WORK, IINFO )
339*
340* Reduce to tridiagonal form.
341*
342 IF( WANTZ ) THEN
343 VECT = 'u'
344 ELSE
345 VECT = 'n'
346 END IF
347 CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
348 $ WORK( INDWRK ), IINFO )
349*
350* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
351*
352.NOT. IF( WANTZ ) THEN
353 CALL DSTERF( N, W, WORK( INDE ), INFO )
354 ELSE
355 CALL DSTEDC( 'i', N, W, WORK( INDE ), WORK( INDWRK ), N,
356 $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
357 CALL DGEMM( 'n', 'n', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
358 $ ZERO, WORK( INDWK2 ), N )
359 CALL DLACPY( 'a', N, N, WORK( INDWK2 ), N, Z, LDZ )
360 END IF
361*
362 WORK( 1 ) = LWMIN
363 IWORK( 1 ) = LIWMIN
364*
365 RETURN
366*
367* End of DSBGVD
368*
369 END
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:188
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dsbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
DSBGST
Definition dsbgst.f:159
subroutine dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
DSBTRD
Definition dsbtrd.f:163
subroutine dpbstf(uplo, n, kd, ab, ldab, info)
DPBSTF
Definition dpbstf.f:152
subroutine dsbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, iwork, liwork, info)
DSBGVD
Definition dsbgvd.f:227
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:187