OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dstevr.f
Go to the documentation of this file.
1*> \brief <b> DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSTEVR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
22* M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
23* LIWORK, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBZ, RANGE
27* INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
28* DOUBLE PRECISION ABSTOL, VL, VU
29* ..
30* .. Array Arguments ..
31* INTEGER ISUPPZ( * ), IWORK( * )
32* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> DSTEVR computes selected eigenvalues and, optionally, eigenvectors
42*> of a real symmetric tridiagonal matrix T. Eigenvalues and
43*> eigenvectors can be selected by specifying either a range of values
44*> or a range of indices for the desired eigenvalues.
45*>
46*> Whenever possible, DSTEVR calls DSTEMR to compute the
47*> eigenspectrum using Relatively Robust Representations. DSTEMR
48*> computes eigenvalues by the dqds algorithm, while orthogonal
49*> eigenvectors are computed from various "good" L D L^T representations
50*> (also known as Relatively Robust Representations). Gram-Schmidt
51*> orthogonalization is avoided as far as possible. More specifically,
52*> the various steps of the algorithm are as follows. For the i-th
53*> unreduced block of T,
54*> (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
55*> is a relatively robust representation,
56*> (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
57*> relative accuracy by the dqds algorithm,
58*> (c) If there is a cluster of close eigenvalues, "choose" sigma_i
59*> close to the cluster, and go to step (a),
60*> (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
61*> compute the corresponding eigenvector by forming a
62*> rank-revealing twisted factorization.
63*> The desired accuracy of the output can be specified by the input
64*> parameter ABSTOL.
65*>
66*> For more details, see "A new O(n^2) algorithm for the symmetric
67*> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
68*> Computer Science Division Technical Report No. UCB//CSD-97-971,
69*> UC Berkeley, May 1997.
70*>
71*>
72*> Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
73*> on machines which conform to the ieee-754 floating point standard.
74*> DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
75*> when partial spectrum requests are made.
76*>
77*> Normal execution of DSTEMR may create NaNs and infinities and
78*> hence may abort due to a floating point exception in environments
79*> which do not handle NaNs and infinities in the ieee standard default
80*> manner.
81*> \endverbatim
82*
83* Arguments:
84* ==========
85*
86*> \param[in] JOBZ
87*> \verbatim
88*> JOBZ is CHARACTER*1
89*> = 'N': Compute eigenvalues only;
90*> = 'V': Compute eigenvalues and eigenvectors.
91*> \endverbatim
92*>
93*> \param[in] RANGE
94*> \verbatim
95*> RANGE is CHARACTER*1
96*> = 'A': all eigenvalues will be found.
97*> = 'V': all eigenvalues in the half-open interval (VL,VU]
98*> will be found.
99*> = 'I': the IL-th through IU-th eigenvalues will be found.
100*> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
101*> DSTEIN are called
102*> \endverbatim
103*>
104*> \param[in] N
105*> \verbatim
106*> N is INTEGER
107*> The order of the matrix. N >= 0.
108*> \endverbatim
109*>
110*> \param[in,out] D
111*> \verbatim
112*> D is DOUBLE PRECISION array, dimension (N)
113*> On entry, the n diagonal elements of the tridiagonal matrix
114*> A.
115*> On exit, D may be multiplied by a constant factor chosen
116*> to avoid over/underflow in computing the eigenvalues.
117*> \endverbatim
118*>
119*> \param[in,out] E
120*> \verbatim
121*> E is DOUBLE PRECISION array, dimension (max(1,N-1))
122*> On entry, the (n-1) subdiagonal elements of the tridiagonal
123*> matrix A in elements 1 to N-1 of E.
124*> On exit, E may be multiplied by a constant factor chosen
125*> to avoid over/underflow in computing the eigenvalues.
126*> \endverbatim
127*>
128*> \param[in] VL
129*> \verbatim
130*> VL is DOUBLE PRECISION
131*> If RANGE='V', the lower bound of the interval to
132*> be searched for eigenvalues. VL < VU.
133*> Not referenced if RANGE = 'A' or 'I'.
134*> \endverbatim
135*>
136*> \param[in] VU
137*> \verbatim
138*> VU is DOUBLE PRECISION
139*> If RANGE='V', the upper bound of the interval to
140*> be searched for eigenvalues. VL < VU.
141*> Not referenced if RANGE = 'A' or 'I'.
142*> \endverbatim
143*>
144*> \param[in] IL
145*> \verbatim
146*> IL is INTEGER
147*> If RANGE='I', the index of the
148*> smallest eigenvalue to be returned.
149*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
150*> Not referenced if RANGE = 'A' or 'V'.
151*> \endverbatim
152*>
153*> \param[in] IU
154*> \verbatim
155*> IU is INTEGER
156*> If RANGE='I', the index of the
157*> largest eigenvalue to be returned.
158*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
159*> Not referenced if RANGE = 'A' or 'V'.
160*> \endverbatim
161*>
162*> \param[in] ABSTOL
163*> \verbatim
164*> ABSTOL is DOUBLE PRECISION
165*> The absolute error tolerance for the eigenvalues.
166*> An approximate eigenvalue is accepted as converged
167*> when it is determined to lie in an interval [a,b]
168*> of width less than or equal to
169*>
170*> ABSTOL + EPS * max( |a|,|b| ) ,
171*>
172*> where EPS is the machine precision. If ABSTOL is less than
173*> or equal to zero, then EPS*|T| will be used in its place,
174*> where |T| is the 1-norm of the tridiagonal matrix obtained
175*> by reducing A to tridiagonal form.
176*>
177*> See "Computing Small Singular Values of Bidiagonal Matrices
178*> with Guaranteed High Relative Accuracy," by Demmel and
179*> Kahan, LAPACK Working Note #3.
180*>
181*> If high relative accuracy is important, set ABSTOL to
182*> DLAMCH( 'Safe minimum' ). Doing so will guarantee that
183*> eigenvalues are computed to high relative accuracy when
184*> possible in future releases. The current code does not
185*> make any guarantees about high relative accuracy, but
186*> future releases will. See J. Barlow and J. Demmel,
187*> "Computing Accurate Eigensystems of Scaled Diagonally
188*> Dominant Matrices", LAPACK Working Note #7, for a discussion
189*> of which matrices define their eigenvalues to high relative
190*> accuracy.
191*> \endverbatim
192*>
193*> \param[out] M
194*> \verbatim
195*> M is INTEGER
196*> The total number of eigenvalues found. 0 <= M <= N.
197*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
198*> \endverbatim
199*>
200*> \param[out] W
201*> \verbatim
202*> W is DOUBLE PRECISION array, dimension (N)
203*> The first M elements contain the selected eigenvalues in
204*> ascending order.
205*> \endverbatim
206*>
207*> \param[out] Z
208*> \verbatim
209*> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
210*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
211*> contain the orthonormal eigenvectors of the matrix A
212*> corresponding to the selected eigenvalues, with the i-th
213*> column of Z holding the eigenvector associated with W(i).
214*> Note: the user must ensure that at least max(1,M) columns are
215*> supplied in the array Z; if RANGE = 'V', the exact value of M
216*> is not known in advance and an upper bound must be used.
217*> \endverbatim
218*>
219*> \param[in] LDZ
220*> \verbatim
221*> LDZ is INTEGER
222*> The leading dimension of the array Z. LDZ >= 1, and if
223*> JOBZ = 'V', LDZ >= max(1,N).
224*> \endverbatim
225*>
226*> \param[out] ISUPPZ
227*> \verbatim
228*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
229*> The support of the eigenvectors in Z, i.e., the indices
230*> indicating the nonzero elements in Z. The i-th eigenvector
231*> is nonzero only in elements ISUPPZ( 2*i-1 ) through
232*> ISUPPZ( 2*i ).
233*> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
234*> \endverbatim
235*>
236*> \param[out] WORK
237*> \verbatim
238*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
239*> On exit, if INFO = 0, WORK(1) returns the optimal (and
240*> minimal) LWORK.
241*> \endverbatim
242*>
243*> \param[in] LWORK
244*> \verbatim
245*> LWORK is INTEGER
246*> The dimension of the array WORK. LWORK >= max(1,20*N).
247*>
248*> If LWORK = -1, then a workspace query is assumed; the routine
249*> only calculates the optimal sizes of the WORK and IWORK
250*> arrays, returns these values as the first entries of the WORK
251*> and IWORK arrays, and no error message related to LWORK or
252*> LIWORK is issued by XERBLA.
253*> \endverbatim
254*>
255*> \param[out] IWORK
256*> \verbatim
257*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
258*> On exit, if INFO = 0, IWORK(1) returns the optimal (and
259*> minimal) LIWORK.
260*> \endverbatim
261*>
262*> \param[in] LIWORK
263*> \verbatim
264*> LIWORK is INTEGER
265*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
266*>
267*> If LIWORK = -1, then a workspace query is assumed; the
268*> routine only calculates the optimal sizes of the WORK and
269*> IWORK arrays, returns these values as the first entries of
270*> the WORK and IWORK arrays, and no error message related to
271*> LWORK or LIWORK is issued by XERBLA.
272*> \endverbatim
273*>
274*> \param[out] INFO
275*> \verbatim
276*> INFO is INTEGER
277*> = 0: successful exit
278*> < 0: if INFO = -i, the i-th argument had an illegal value
279*> > 0: Internal error
280*> \endverbatim
281*
282* Authors:
283* ========
284*
285*> \author Univ. of Tennessee
286*> \author Univ. of California Berkeley
287*> \author Univ. of Colorado Denver
288*> \author NAG Ltd.
289*
290*> \ingroup doubleOTHEReigen
291*
292*> \par Contributors:
293* ==================
294*>
295*> Inderjit Dhillon, IBM Almaden, USA \n
296*> Osni Marques, LBNL/NERSC, USA \n
297*> Ken Stanley, Computer Science Division, University of
298*> California at Berkeley, USA \n
299*>
300* =====================================================================
301 SUBROUTINE dstevr( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
302 $ M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
303 $ LIWORK, INFO )
304*
305* -- LAPACK driver routine --
306* -- LAPACK is a software package provided by Univ. of Tennessee, --
307* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
308*
309* .. Scalar Arguments ..
310 CHARACTER JOBZ, RANGE
311 INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
312 DOUBLE PRECISION ABSTOL, VL, VU
313* ..
314* .. Array Arguments ..
315 INTEGER ISUPPZ( * ), IWORK( * )
316 DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
317* ..
318*
319* =====================================================================
320*
321* .. Parameters ..
322 DOUBLE PRECISION ZERO, ONE, TWO
323 PARAMETER ( ZERO = 0.0d+0, one = 1.0d+0, two = 2.0d+0 )
324* ..
325* .. Local Scalars ..
326 LOGICAL ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
327 $ TRYRAC
328 CHARACTER ORDER
329 INTEGER I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
330 $ indiwo, iscale, itmp1, j, jj, liwmin, lwmin,
331 $ nsplit
332 DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
333 $ TMP1, TNRM, VLL, VUU
334* ..
335* .. External Functions ..
336 LOGICAL LSAME
337 INTEGER ILAENV
338 DOUBLE PRECISION DLAMCH, DLANST
339 EXTERNAL lsame, ilaenv, dlamch, dlanst
340* ..
341* .. External Subroutines ..
342 EXTERNAL dcopy, dscal, dstebz, dstemr, dstein, dsterf,
343 $ dswap, xerbla
344* ..
345* .. Intrinsic Functions ..
346 INTRINSIC max, min, sqrt
347* ..
348* .. Executable Statements ..
349*
350*
351* Test the input parameters.
352*
353 ieeeok = ilaenv( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
354*
355 wantz = lsame( jobz, 'v' )
356 ALLEIG = LSAME( RANGE, 'a' )
357 VALEIG = LSAME( RANGE, 'v' )
358 INDEIG = LSAME( RANGE, 'i' )
359*
360.EQ..OR..EQ. LQUERY = ( ( LWORK-1 ) ( LIWORK-1 ) )
361 LWMIN = MAX( 1, 20*N )
362 LIWMIN = MAX( 1, 10*N )
363*
364*
365 INFO = 0
366.NOT..OR. IF( ( WANTZ LSAME( JOBZ, 'n' ) ) ) THEN
367 INFO = -1
368.NOT..OR..OR. ELSE IF( ( ALLEIG VALEIG INDEIG ) ) THEN
369 INFO = -2
370.LT. ELSE IF( N0 ) THEN
371 INFO = -3
372 ELSE
373 IF( VALEIG ) THEN
374.GT..AND..LE. IF( N0 VUVL )
375 $ INFO = -7
376 ELSE IF( INDEIG ) THEN
377.LT..OR..GT. IF( IL1 ILMAX( 1, N ) ) THEN
378 INFO = -8
379.LT..OR..GT. ELSE IF( IUMIN( N, IL ) IUN ) THEN
380 INFO = -9
381 END IF
382 END IF
383 END IF
384.EQ. IF( INFO0 ) THEN
385.LT..OR..AND..LT. IF( LDZ1 ( WANTZ LDZN ) ) THEN
386 INFO = -14
387 END IF
388 END IF
389*
390.EQ. IF( INFO0 ) THEN
391 WORK( 1 ) = LWMIN
392 IWORK( 1 ) = LIWMIN
393*
394.LT..AND..NOT. IF( LWORKLWMIN LQUERY ) THEN
395 INFO = -17
396.LT..AND..NOT. ELSE IF( LIWORKLIWMIN LQUERY ) THEN
397 INFO = -19
398 END IF
399 END IF
400*
401.NE. IF( INFO0 ) THEN
402 CALL XERBLA( 'dstevr', -INFO )
403 RETURN
404 ELSE IF( LQUERY ) THEN
405 RETURN
406 END IF
407*
408* Quick return if possible
409*
410 M = 0
411.EQ. IF( N0 )
412 $ RETURN
413*
414.EQ. IF( N1 ) THEN
415.OR. IF( ALLEIG INDEIG ) THEN
416 M = 1
417 W( 1 ) = D( 1 )
418 ELSE
419.LT..AND..GE. IF( VLD( 1 ) VUD( 1 ) ) THEN
420 M = 1
421 W( 1 ) = D( 1 )
422 END IF
423 END IF
424 IF( WANTZ )
425 $ Z( 1, 1 ) = ONE
426 RETURN
427 END IF
428*
429* Get machine constants.
430*
431 SAFMIN = DLAMCH( 'safe minimum' )
432 EPS = DLAMCH( 'precision' )
433 SMLNUM = SAFMIN / EPS
434 BIGNUM = ONE / SMLNUM
435 RMIN = SQRT( SMLNUM )
436 RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
437*
438*
439* Scale matrix to allowable range, if necessary.
440*
441 ISCALE = 0
442 IF( VALEIG ) THEN
443 VLL = VL
444 VUU = VU
445 END IF
446*
447 TNRM = DLANST( 'm', N, D, E )
448.GT..AND..LT. IF( TNRMZERO TNRMRMIN ) THEN
449 ISCALE = 1
450 SIGMA = RMIN / TNRM
451.GT. ELSE IF( TNRMRMAX ) THEN
452 ISCALE = 1
453 SIGMA = RMAX / TNRM
454 END IF
455.EQ. IF( ISCALE1 ) THEN
456 CALL DSCAL( N, SIGMA, D, 1 )
457 CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
458 IF( VALEIG ) THEN
459 VLL = VL*SIGMA
460 VUU = VU*SIGMA
461 END IF
462 END IF
463
464* Initialize indices into workspaces. Note: These indices are used only
465* if DSTERF or DSTEMR fail.
466
467* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
468* stores the block indices of each of the M<=N eigenvalues.
469 INDIBL = 1
470* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
471* stores the starting and finishing indices of each block.
472 INDISP = INDIBL + N
473* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
474* that corresponding to eigenvectors that fail to converge in
475* DSTEIN. This information is discarded; if any fail, the driver
476* returns INFO > 0.
477 INDIFL = INDISP + N
478* INDIWO is the offset of the remaining integer workspace.
479 INDIWO = INDISP + N
480*
481* If all eigenvalues are desired, then
482* call DSTERF or DSTEMR. If this fails for some eigenvalue, then
483* try DSTEBZ.
484*
485*
486 TEST = .FALSE.
487 IF( INDEIG ) THEN
488.EQ..AND..EQ. IF( IL1 IUN ) THEN
489 TEST = .TRUE.
490 END IF
491 END IF
492.OR..AND..EQ. IF( ( ALLEIG TEST ) IEEEOK1 ) THEN
493 CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
494.NOT. IF( WANTZ ) THEN
495 CALL DCOPY( N, D, 1, W, 1 )
496 CALL DSTERF( N, W, WORK, INFO )
497 ELSE
498 CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
499.LE. IF (ABSTOL TWO*N*EPS) THEN
500 TRYRAC = .TRUE.
501 ELSE
502 TRYRAC = .FALSE.
503 END IF
504 CALL DSTEMR( JOBZ, 'a', N, WORK( N+1 ), WORK, VL, VU, IL,
505 $ IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
506 $ WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
507*
508 END IF
509.EQ. IF( INFO0 ) THEN
510 M = N
511 GO TO 10
512 END IF
513 INFO = 0
514 END IF
515*
516* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
517*
518 IF( WANTZ ) THEN
519 ORDER = 'b'
520 ELSE
521 ORDER = 'e'
522 END IF
523
524 CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
525 $ NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
526 $ IWORK( INDIWO ), INFO )
527*
528 IF( WANTZ ) THEN
529 CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
530 $ Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
531 $ INFO )
532 END IF
533*
534* If matrix was scaled, then rescale eigenvalues appropriately.
535*
536 10 CONTINUE
537.EQ. IF( ISCALE1 ) THEN
538.EQ. IF( INFO0 ) THEN
539 IMAX = M
540 ELSE
541 IMAX = INFO - 1
542 END IF
543 CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
544 END IF
545*
546* If eigenvalues are not in order, then sort them, along with
547* eigenvectors.
548*
549 IF( WANTZ ) THEN
550 DO 30 J = 1, M - 1
551 I = 0
552 TMP1 = W( J )
553 DO 20 JJ = J + 1, M
554.LT. IF( W( JJ )TMP1 ) THEN
555 I = JJ
556 TMP1 = W( JJ )
557 END IF
558 20 CONTINUE
559*
560.NE. IF( I0 ) THEN
561 ITMP1 = IWORK( I )
562 W( I ) = W( J )
563 IWORK( I ) = IWORK( J )
564 W( J ) = TMP1
565 IWORK( J ) = ITMP1
566 CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
567 END IF
568 30 CONTINUE
569 END IF
570*
571* Causes problems with tests 19 & 20:
572* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
573*
574*
575 WORK( 1 ) = LWMIN
576 IWORK( 1 ) = LIWMIN
577 RETURN
578*
579* End of DSTEVR
580*
581 END
subroutine dstebz(range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
DSTEBZ
Definition dstebz.f:273
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine dstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifail, info)
DSTEIN
Definition dstein.f:174
subroutine dstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac, work, lwork, iwork, liwork, info)
DSTEMR
Definition dstemr.f:321
subroutine dstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition dstevr.f:304
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dswap(n, dx, incx, dy, incy)
DSWAP
Definition dswap.f:82
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21