OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches

Functions

subroutine sgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
  SGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)
subroutine sgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
  SGBSVX computes the solution to system of linear equations A * X = B for GB matrices
subroutine sgbsvxx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
  SGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

Detailed Description

This is the group of real solve driver functions for GB matrices

Function Documentation

◆ sgbsv()

subroutine sgbsv ( integer n,
integer kl,
integer ku,
integer nrhs,
real, dimension( ldab, * ) ab,
integer ldab,
integer, dimension( * ) ipiv,
real, dimension( ldb, * ) b,
integer ldb,
integer info )

SGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Download SGBSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SGBSV computes the solution to a real system of linear equations
!> A * X = B, where A is a band matrix of order N with KL subdiagonals
!> and KU superdiagonals, and X and B are N-by-NRHS matrices.
!>
!> The LU decomposition with partial pivoting and row interchanges is
!> used to factor A as A = L * U, where L is a product of permutation
!> and unit lower triangular matrices with KL subdiagonals, and U is
!> upper triangular with KL+KU superdiagonals.  The factored form of A
!> is then used to solve the system of equations A * X = B.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is REAL array, dimension (LDAB,N)
!>          On entry, the matrix A in band storage, in rows KL+1 to
!>          2*KL+KU+1; rows 1 to KL of the array need not be set.
!>          The j-th column of A is stored in the j-th column of the
!>          array AB as follows:
!>          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
!>          On exit, details of the factorization: U is stored as an
!>          upper triangular band matrix with KL+KU superdiagonals in
!>          rows 1 to KL+KU+1, and the multipliers used during the
!>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
!>          See below for further details.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          The pivot indices that define the permutation matrix P;
!>          row i of the matrix was interchanged with row IPIV(i).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
!>                has been completed, but the factor U is exactly
!>                singular, and the solution has not been computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The band storage scheme is illustrated by the following example, when
!>  M = N = 6, KL = 2, KU = 1:
!>
!>  On entry:                       On exit:
!>
!>      *    *    *    +    +    +       *    *    *   u14  u25  u36
!>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
!>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
!>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
!>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
!>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
!>
!>  Array elements marked * are not used by the routine; elements marked
!>  + need not be set on entry, but are required by the routine to store
!>  elements of U because of fill-in resulting from the row interchanges.
!> 

Definition at line 161 of file sgbsv.f.

162*
163* -- LAPACK driver routine --
164* -- LAPACK is a software package provided by Univ. of Tennessee, --
165* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166*
167* .. Scalar Arguments ..
168 INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
169* ..
170* .. Array Arguments ..
171 INTEGER IPIV( * )
172 REAL AB( LDAB, * ), B( LDB, * )
173* ..
174*
175* =====================================================================
176*
177* .. External Subroutines ..
178 EXTERNAL sgbtrf, sgbtrs, xerbla
179* ..
180* .. Intrinsic Functions ..
181 INTRINSIC max
182* ..
183* .. Executable Statements ..
184*
185* Test the input parameters.
186*
187 info = 0
188 IF( n.LT.0 ) THEN
189 info = -1
190 ELSE IF( kl.LT.0 ) THEN
191 info = -2
192 ELSE IF( ku.LT.0 ) THEN
193 info = -3
194 ELSE IF( nrhs.LT.0 ) THEN
195 info = -4
196 ELSE IF( ldab.LT.2*kl+ku+1 ) THEN
197 info = -6
198 ELSE IF( ldb.LT.max( n, 1 ) ) THEN
199 info = -9
200 END IF
201 IF( info.NE.0 ) THEN
202 CALL xerbla( 'SGBSV ', -info )
203 RETURN
204 END IF
205*
206* Compute the LU factorization of the band matrix A.
207*
208 CALL sgbtrf( n, n, kl, ku, ab, ldab, ipiv, info )
209 IF( info.EQ.0 ) THEN
210*
211* Solve the system A*X = B, overwriting B with X.
212*
213 CALL sgbtrs( 'No transpose', n, kl, ku, nrhs, ab, ldab, ipiv,
214 $ b, ldb, info )
215 END IF
216 RETURN
217*
218* End of SGBSV
219*
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine sgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
SGBTRF
Definition sgbtrf.f:144
subroutine sgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
SGBTRS
Definition sgbtrs.f:138
#define max(a, b)
Definition macros.h:21

◆ sgbsvx()

subroutine sgbsvx ( character fact,
character trans,
integer n,
integer kl,
integer ku,
integer nrhs,
real, dimension( ldab, * ) ab,
integer ldab,
real, dimension( ldafb, * ) afb,
integer ldafb,
integer, dimension( * ) ipiv,
character equed,
real, dimension( * ) r,
real, dimension( * ) c,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real rcond,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SGBSVX computes the solution to system of linear equations A * X = B for GB matrices

Download SGBSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SGBSVX uses the LU factorization to compute the solution to a real
!> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
!> where A is a band matrix of order N with KL subdiagonals and KU
!> superdiagonals, and X and B are N-by-NRHS matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed by this subroutine:
!>
!> 1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
!>    matrix A (after equilibration if FACT = 'E') as
!>       A = L * U,
!>    where L is a product of permutation and unit lower triangular
!>    matrices with KL subdiagonals, and U is upper triangular with
!>    KL+KU superdiagonals.
!>
!> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
!>    returns with INFO = i. Otherwise, the factored form of A is used
!>    to estimate the condition number of the matrix A.  If the
!>    reciprocal of the condition number is less than machine precision,
!>    INFO = N+1 is returned as a warning, but the routine still goes on
!>    to solve for X and compute error bounds as described below.
!>
!> 4. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 5. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!>
!> 6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of the matrix A is
!>          supplied on entry, and if not, whether the matrix A should be
!>          equilibrated before it is factored.
!>          = 'F':  On entry, AFB and IPIV contain the factored form of
!>                  A.  If EQUED is not 'N', the matrix A has been
!>                  equilibrated with scaling factors given by R and C.
!>                  AB, AFB, and IPIV are not modified.
!>          = 'N':  The matrix A will be copied to AFB and factored.
!>          = 'E':  The matrix A will be equilibrated if necessary, then
!>                  copied to AFB and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations.
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Transpose)
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is REAL array, dimension (LDAB,N)
!>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>          The j-th column of A is stored in the j-th column of the
!>          array AB as follows:
!>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
!>
!>          If FACT = 'F' and EQUED is not 'N', then A must have been
!>          equilibrated by the scaling factors in R and/or C.  AB is not
!>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
!>          EQUED = 'N' on exit.
!>
!>          On exit, if EQUED .ne. 'N', A is scaled as follows:
!>          EQUED = 'R':  A := diag(R) * A
!>          EQUED = 'C':  A := A * diag(C)
!>          EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[in,out]AFB
!>          AFB is REAL array, dimension (LDAFB,N)
!>          If FACT = 'F', then AFB is an input argument and on entry
!>          contains details of the LU factorization of the band matrix
!>          A, as computed by SGBTRF.  U is stored as an upper triangular
!>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
!>          and the multipliers used during the factorization are stored
!>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
!>          the factored form of the equilibrated matrix A.
!>
!>          If FACT = 'N', then AFB is an output argument and on exit
!>          returns details of the LU factorization of A.
!>
!>          If FACT = 'E', then AFB is an output argument and on exit
!>          returns details of the LU factorization of the equilibrated
!>          matrix A (see the description of AB for the form of the
!>          equilibrated matrix).
!> 
[in]LDAFB
!>          LDAFB is INTEGER
!>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          If FACT = 'F', then IPIV is an input argument and on entry
!>          contains the pivot indices from the factorization A = L*U
!>          as computed by SGBTRF; row i of the matrix was interchanged
!>          with row IPIV(i).
!>
!>          If FACT = 'N', then IPIV is an output argument and on exit
!>          contains the pivot indices from the factorization A = L*U
!>          of the original matrix A.
!>
!>          If FACT = 'E', then IPIV is an output argument and on exit
!>          contains the pivot indices from the factorization A = L*U
!>          of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>          Specifies the form of equilibration that was done.
!>          = 'N':  No equilibration (always true if FACT = 'N').
!>          = 'R':  Row equilibration, i.e., A has been premultiplied by
!>                  diag(R).
!>          = 'C':  Column equilibration, i.e., A has been postmultiplied
!>                  by diag(C).
!>          = 'B':  Both row and column equilibration, i.e., A has been
!>                  replaced by diag(R) * A * diag(C).
!>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>          output argument.
!> 
[in,out]R
!>          R is REAL array, dimension (N)
!>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>          is not accessed.  R is an input argument if FACT = 'F';
!>          otherwise, R is an output argument.  If FACT = 'F' and
!>          EQUED = 'R' or 'B', each element of R must be positive.
!> 
[in,out]C
!>          C is REAL array, dimension (N)
!>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>          is not accessed.  C is an input argument if FACT = 'F';
!>          otherwise, C is an output argument.  If FACT = 'F' and
!>          EQUED = 'C' or 'B', each element of C must be positive.
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit,
!>          if EQUED = 'N', B is not modified;
!>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>          diag(R)*B;
!>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>          overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
!>          to the original system of equations.  Note that A and B are
!>          modified on exit if EQUED .ne. 'N', and the solution to the
!>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
!>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
!>          and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The estimate of the reciprocal condition number of the matrix
!>          A after equilibration (if done).  If RCOND is less than the
!>          machine precision (in particular, if RCOND = 0), the matrix
!>          is singular to working precision.  This condition is
!>          indicated by a return code of INFO > 0.
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is REAL array, dimension (3*N)
!>          On exit, WORK(1) contains the reciprocal pivot growth
!>          factor norm(A)/norm(U). The  norm is
!>          used. If WORK(1) is much less than 1, then the stability
!>          of the LU factorization of the (equilibrated) matrix A
!>          could be poor. This also means that the solution X, condition
!>          estimator RCOND, and forward error bound FERR could be
!>          unreliable. If factorization fails with 0<INFO<=N, then
!>          WORK(1) contains the reciprocal pivot growth factor for the
!>          leading INFO columns of A.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is
!>                <= N:  U(i,i) is exactly zero.  The factorization
!>                       has been completed, but the factor U is exactly
!>                       singular, so the solution and error bounds
!>                       could not be computed. RCOND = 0 is returned.
!>                = N+1: U is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 365 of file sgbsvx.f.

368*
369* -- LAPACK driver routine --
370* -- LAPACK is a software package provided by Univ. of Tennessee, --
371* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
372*
373* .. Scalar Arguments ..
374 CHARACTER EQUED, FACT, TRANS
375 INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
376 REAL RCOND
377* ..
378* .. Array Arguments ..
379 INTEGER IPIV( * ), IWORK( * )
380 REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
381 $ BERR( * ), C( * ), FERR( * ), R( * ),
382 $ WORK( * ), X( LDX, * )
383* ..
384*
385* =====================================================================
386* Moved setting of INFO = N+1 so INFO does not subsequently get
387* overwritten. Sven, 17 Mar 05.
388* =====================================================================
389*
390* .. Parameters ..
391 REAL ZERO, ONE
392 parameter( zero = 0.0e+0, one = 1.0e+0 )
393* ..
394* .. Local Scalars ..
395 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
396 CHARACTER NORM
397 INTEGER I, INFEQU, J, J1, J2
398 REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
399 $ ROWCND, RPVGRW, SMLNUM
400* ..
401* .. External Functions ..
402 LOGICAL LSAME
403 REAL SLAMCH, SLANGB, SLANTB
404 EXTERNAL lsame, slamch, slangb, slantb
405* ..
406* .. External Subroutines ..
407 EXTERNAL scopy, sgbcon, sgbequ, sgbrfs, sgbtrf, sgbtrs,
409* ..
410* .. Intrinsic Functions ..
411 INTRINSIC abs, max, min
412* ..
413* .. Executable Statements ..
414*
415 info = 0
416 nofact = lsame( fact, 'N' )
417 equil = lsame( fact, 'E' )
418 notran = lsame( trans, 'N' )
419 IF( nofact .OR. equil ) THEN
420 equed = 'N'
421 rowequ = .false.
422 colequ = .false.
423 ELSE
424 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
425 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
426 smlnum = slamch( 'Safe minimum' )
427 bignum = one / smlnum
428 END IF
429*
430* Test the input parameters.
431*
432 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.lsame( fact, 'F' ) )
433 $ THEN
434 info = -1
435 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
436 $ lsame( trans, 'C' ) ) THEN
437 info = -2
438 ELSE IF( n.LT.0 ) THEN
439 info = -3
440 ELSE IF( kl.LT.0 ) THEN
441 info = -4
442 ELSE IF( ku.LT.0 ) THEN
443 info = -5
444 ELSE IF( nrhs.LT.0 ) THEN
445 info = -6
446 ELSE IF( ldab.LT.kl+ku+1 ) THEN
447 info = -8
448 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
449 info = -10
450 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
451 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
452 info = -12
453 ELSE
454 IF( rowequ ) THEN
455 rcmin = bignum
456 rcmax = zero
457 DO 10 j = 1, n
458 rcmin = min( rcmin, r( j ) )
459 rcmax = max( rcmax, r( j ) )
460 10 CONTINUE
461 IF( rcmin.LE.zero ) THEN
462 info = -13
463 ELSE IF( n.GT.0 ) THEN
464 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
465 ELSE
466 rowcnd = one
467 END IF
468 END IF
469 IF( colequ .AND. info.EQ.0 ) THEN
470 rcmin = bignum
471 rcmax = zero
472 DO 20 j = 1, n
473 rcmin = min( rcmin, c( j ) )
474 rcmax = max( rcmax, c( j ) )
475 20 CONTINUE
476 IF( rcmin.LE.zero ) THEN
477 info = -14
478 ELSE IF( n.GT.0 ) THEN
479 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
480 ELSE
481 colcnd = one
482 END IF
483 END IF
484 IF( info.EQ.0 ) THEN
485 IF( ldb.LT.max( 1, n ) ) THEN
486 info = -16
487 ELSE IF( ldx.LT.max( 1, n ) ) THEN
488 info = -18
489 END IF
490 END IF
491 END IF
492*
493 IF( info.NE.0 ) THEN
494 CALL xerbla( 'SGBSVX', -info )
495 RETURN
496 END IF
497*
498 IF( equil ) THEN
499*
500* Compute row and column scalings to equilibrate the matrix A.
501*
502 CALL sgbequ( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
503 $ amax, infequ )
504 IF( infequ.EQ.0 ) THEN
505*
506* Equilibrate the matrix.
507*
508 CALL slaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
509 $ amax, equed )
510 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
511 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
512 END IF
513 END IF
514*
515* Scale the right hand side.
516*
517 IF( notran ) THEN
518 IF( rowequ ) THEN
519 DO 40 j = 1, nrhs
520 DO 30 i = 1, n
521 b( i, j ) = r( i )*b( i, j )
522 30 CONTINUE
523 40 CONTINUE
524 END IF
525 ELSE IF( colequ ) THEN
526 DO 60 j = 1, nrhs
527 DO 50 i = 1, n
528 b( i, j ) = c( i )*b( i, j )
529 50 CONTINUE
530 60 CONTINUE
531 END IF
532*
533 IF( nofact .OR. equil ) THEN
534*
535* Compute the LU factorization of the band matrix A.
536*
537 DO 70 j = 1, n
538 j1 = max( j-ku, 1 )
539 j2 = min( j+kl, n )
540 CALL scopy( j2-j1+1, ab( ku+1-j+j1, j ), 1,
541 $ afb( kl+ku+1-j+j1, j ), 1 )
542 70 CONTINUE
543*
544 CALL sgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
545*
546* Return if INFO is non-zero.
547*
548 IF( info.GT.0 ) THEN
549*
550* Compute the reciprocal pivot growth factor of the
551* leading rank-deficient INFO columns of A.
552*
553 anorm = zero
554 DO 90 j = 1, info
555 DO 80 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
556 anorm = max( anorm, abs( ab( i, j ) ) )
557 80 CONTINUE
558 90 CONTINUE
559 rpvgrw = slantb( 'M', 'U', 'N', info, min( info-1, kl+ku ),
560 $ afb( max( 1, kl+ku+2-info ), 1 ), ldafb,
561 $ work )
562 IF( rpvgrw.EQ.zero ) THEN
563 rpvgrw = one
564 ELSE
565 rpvgrw = anorm / rpvgrw
566 END IF
567 work( 1 ) = rpvgrw
568 rcond = zero
569 RETURN
570 END IF
571 END IF
572*
573* Compute the norm of the matrix A and the
574* reciprocal pivot growth factor RPVGRW.
575*
576 IF( notran ) THEN
577 norm = '1'
578 ELSE
579 norm = 'I'
580 END IF
581 anorm = slangb( norm, n, kl, ku, ab, ldab, work )
582 rpvgrw = slantb( 'M', 'U', 'N', n, kl+ku, afb, ldafb, work )
583 IF( rpvgrw.EQ.zero ) THEN
584 rpvgrw = one
585 ELSE
586 rpvgrw = slangb( 'M', n, kl, ku, ab, ldab, work ) / rpvgrw
587 END IF
588*
589* Compute the reciprocal of the condition number of A.
590*
591 CALL sgbcon( norm, n, kl, ku, afb, ldafb, ipiv, anorm, rcond,
592 $ work, iwork, info )
593*
594* Compute the solution matrix X.
595*
596 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
597 CALL sgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
598 $ info )
599*
600* Use iterative refinement to improve the computed solution and
601* compute error bounds and backward error estimates for it.
602*
603 CALL sgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
604 $ b, ldb, x, ldx, ferr, berr, work, iwork, info )
605*
606* Transform the solution matrix X to a solution of the original
607* system.
608*
609 IF( notran ) THEN
610 IF( colequ ) THEN
611 DO 110 j = 1, nrhs
612 DO 100 i = 1, n
613 x( i, j ) = c( i )*x( i, j )
614 100 CONTINUE
615 110 CONTINUE
616 DO 120 j = 1, nrhs
617 ferr( j ) = ferr( j ) / colcnd
618 120 CONTINUE
619 END IF
620 ELSE IF( rowequ ) THEN
621 DO 140 j = 1, nrhs
622 DO 130 i = 1, n
623 x( i, j ) = r( i )*x( i, j )
624 130 CONTINUE
625 140 CONTINUE
626 DO 150 j = 1, nrhs
627 ferr( j ) = ferr( j ) / rowcnd
628 150 CONTINUE
629 END IF
630*
631* Set INFO = N+1 if the matrix is singular to working precision.
632*
633 IF( rcond.LT.slamch( 'Epsilon' ) )
634 $ info = n + 1
635*
636 work( 1 ) = rpvgrw
637 RETURN
638*
639* End of SGBSVX
640*
norm(diag(diag(diag(inv(mat))) -id.SOL), 2) % destroy mumps instance id.JOB
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
subroutine slaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
SLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.
Definition slaqgb.f:159
real function slangb(norm, n, kl, ku, ab, ldab, work)
SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slangb.f:124
subroutine sgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
SGBEQU
Definition sgbequ.f:153
subroutine sgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SGBRFS
Definition sgbrfs.f:205
subroutine sgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
SGBCON
Definition sgbcon.f:146
real function slantb(norm, uplo, diag, n, k, ab, ldab, work)
SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slantb.f:140
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
#define min(a, b)
Definition macros.h:20

◆ sgbsvxx()

subroutine sgbsvxx ( character fact,
character trans,
integer n,
integer kl,
integer ku,
integer nrhs,
real, dimension( ldab, * ) ab,
integer ldab,
real, dimension( ldafb, * ) afb,
integer ldafb,
integer, dimension( * ) ipiv,
character equed,
real, dimension( * ) r,
real, dimension( * ) c,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx , * ) x,
integer ldx,
real rcond,
real rpvgrw,
real, dimension( * ) berr,
integer n_err_bnds,
real, dimension( nrhs, * ) err_bnds_norm,
real, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
real, dimension( * ) params,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

Download SGBSVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    SGBSVXX uses the LU factorization to compute the solution to a
!>    real system of linear equations  A * X = B,  where A is an
!>    N-by-N matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. SGBSVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    SGBSVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    SGBSVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what SGBSVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>
!>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>      A = P * L * U,
!>
!>    where P is a permutation matrix, L is a unit lower triangular
!>    matrix, and U is upper triangular.
!>
!>    3. If some U(i,i)=0, so that U is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND). If the reciprocal of the condition number is less
!>    than machine precision, the routine still goes on to solve for X
!>    and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by R and C.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>     Specifies the form of the system of equations:
!>       = 'N':  A * X = B     (No transpose)
!>       = 'T':  A**T * X = B  (Transpose)
!>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>     The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>     The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]AB
!>          AB is REAL array, dimension (LDAB,N)
!>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>     The j-th column of A is stored in the j-th column of the
!>     array AB as follows:
!>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
!>
!>     If FACT = 'F' and EQUED is not 'N', then AB must have been
!>     equilibrated by the scaling factors in R and/or C.  AB is not
!>     modified if FACT = 'F' or 'N', or if FACT = 'E' and
!>     EQUED = 'N' on exit.
!>
!>     On exit, if EQUED .ne. 'N', A is scaled as follows:
!>     EQUED = 'R':  A := diag(R) * A
!>     EQUED = 'C':  A := A * diag(C)
!>     EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDAB
!>          LDAB is INTEGER
!>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
!> 
[in,out]AFB
!>          AFB is REAL array, dimension (LDAFB,N)
!>     If FACT = 'F', then AFB is an input argument and on entry
!>     contains details of the LU factorization of the band matrix
!>     A, as computed by SGBTRF.  U is stored as an upper triangular
!>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
!>     and the multipliers used during the factorization are stored
!>     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
!>     the factored form of the equilibrated matrix A.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the equilibrated matrix A (see the description of A for
!>     the form of the equilibrated matrix).
!> 
[in]LDAFB
!>          LDAFB is INTEGER
!>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains the pivot indices from the factorization A = P*L*U
!>     as computed by SGETRF; row i of the matrix was interchanged
!>     with row IPIV(i).
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'R':  Row equilibration, i.e., A has been premultiplied by
!>               diag(R).
!>       = 'C':  Column equilibration, i.e., A has been postmultiplied
!>               by diag(C).
!>       = 'B':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(R) * A * diag(C).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]R
!>          R is REAL array, dimension (N)
!>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>     is not accessed.  R is an input argument if FACT = 'F';
!>     otherwise, R is an output argument.  If FACT = 'F' and
!>     EQUED = 'R' or 'B', each element of R must be positive.
!>     If R is output, each element of R is a power of the radix.
!>     If R is input, each element of R should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]C
!>          C is REAL array, dimension (N)
!>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>     is not accessed.  C is an input argument if FACT = 'F';
!>     otherwise, C is an output argument.  If FACT = 'F' and
!>     EQUED = 'C' or 'B', each element of C must be positive.
!>     If C is output, each element of C is a power of the radix.
!>     If C is input, each element of C should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>        diag(R)*B;
!>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>        overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit
!>     if EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
!>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is REAL
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.  In SGESVX, this quantity is
!>     returned in WORK(1).
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is REAL array, dimension NPARAMS
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the double-precision refinement algorithm,
!>                    possibly with doubled-single computations if the
!>                    compilation environment does not support DOUBLE
!>                    PRECISION.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is REAL array, dimension (4*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 558 of file sgbsvxx.f.

563*
564* -- LAPACK driver routine --
565* -- LAPACK is a software package provided by Univ. of Tennessee, --
566* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
567*
568* .. Scalar Arguments ..
569 CHARACTER EQUED, FACT, TRANS
570 INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
571 $ N_ERR_BNDS
572 REAL RCOND, RPVGRW
573* ..
574* .. Array Arguments ..
575 INTEGER IPIV( * ), IWORK( * )
576 REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
577 $ X( LDX , * ),WORK( * )
578 REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
579 $ ERR_BNDS_NORM( NRHS, * ),
580 $ ERR_BNDS_COMP( NRHS, * )
581* ..
582*
583* ==================================================================
584*
585* .. Parameters ..
586 REAL ZERO, ONE
587 parameter( zero = 0.0e+0, one = 1.0e+0 )
588 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
589 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
590 INTEGER CMP_ERR_I, PIV_GROWTH_I
591 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
592 $ berr_i = 3 )
593 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
594 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
595 $ piv_growth_i = 9 )
596* ..
597* .. Local Scalars ..
598 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
599 INTEGER INFEQU, I, J, KL, KU
600 REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
601 $ ROWCND, SMLNUM
602* ..
603* .. External Functions ..
604 EXTERNAL lsame, slamch, sla_gbrpvgrw
605 LOGICAL LSAME
606 REAL SLAMCH, SLA_GBRPVGRW
607* ..
608* .. External Subroutines ..
609 EXTERNAL sgbequb, sgbtrf, sgbtrs, slacpy, slaqgb,
611* ..
612* .. Intrinsic Functions ..
613 INTRINSIC max, min
614* ..
615* .. Executable Statements ..
616*
617 info = 0
618 nofact = lsame( fact, 'N' )
619 equil = lsame( fact, 'E' )
620 notran = lsame( trans, 'N' )
621 smlnum = slamch( 'Safe minimum' )
622 bignum = one / smlnum
623 IF( nofact .OR. equil ) THEN
624 equed = 'N'
625 rowequ = .false.
626 colequ = .false.
627 ELSE
628 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
629 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
630 END IF
631*
632* Default is failure. If an input parameter is wrong or
633* factorization fails, make everything look horrible. Only the
634* pivot growth is set here, the rest is initialized in SGBRFSX.
635*
636 rpvgrw = zero
637*
638* Test the input parameters. PARAMS is not tested until SGBRFSX.
639*
640 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
641 $ lsame( fact, 'F' ) ) THEN
642 info = -1
643 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
644 $ lsame( trans, 'C' ) ) THEN
645 info = -2
646 ELSE IF( n.LT.0 ) THEN
647 info = -3
648 ELSE IF( kl.LT.0 ) THEN
649 info = -4
650 ELSE IF( ku.LT.0 ) THEN
651 info = -5
652 ELSE IF( nrhs.LT.0 ) THEN
653 info = -6
654 ELSE IF( ldab.LT.kl+ku+1 ) THEN
655 info = -8
656 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
657 info = -10
658 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
659 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
660 info = -12
661 ELSE
662 IF( rowequ ) THEN
663 rcmin = bignum
664 rcmax = zero
665 DO 10 j = 1, n
666 rcmin = min( rcmin, r( j ) )
667 rcmax = max( rcmax, r( j ) )
668 10 CONTINUE
669 IF( rcmin.LE.zero ) THEN
670 info = -13
671 ELSE IF( n.GT.0 ) THEN
672 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
673 ELSE
674 rowcnd = one
675 END IF
676 END IF
677 IF( colequ .AND. info.EQ.0 ) THEN
678 rcmin = bignum
679 rcmax = zero
680 DO 20 j = 1, n
681 rcmin = min( rcmin, c( j ) )
682 rcmax = max( rcmax, c( j ) )
683 20 CONTINUE
684 IF( rcmin.LE.zero ) THEN
685 info = -14
686 ELSE IF( n.GT.0 ) THEN
687 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
688 ELSE
689 colcnd = one
690 END IF
691 END IF
692 IF( info.EQ.0 ) THEN
693 IF( ldb.LT.max( 1, n ) ) THEN
694 info = -15
695 ELSE IF( ldx.LT.max( 1, n ) ) THEN
696 info = -16
697 END IF
698 END IF
699 END IF
700*
701 IF( info.NE.0 ) THEN
702 CALL xerbla( 'SGBSVXX', -info )
703 RETURN
704 END IF
705*
706 IF( equil ) THEN
707*
708* Compute row and column scalings to equilibrate the matrix A.
709*
710 CALL sgbequb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
711 $ amax, infequ )
712 IF( infequ.EQ.0 ) THEN
713*
714* Equilibrate the matrix.
715*
716 CALL slaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
717 $ amax, equed )
718 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
719 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
720 END IF
721*
722* If the scaling factors are not applied, set them to 1.0.
723*
724 IF ( .NOT.rowequ ) THEN
725 DO j = 1, n
726 r( j ) = 1.0
727 END DO
728 END IF
729 IF ( .NOT.colequ ) THEN
730 DO j = 1, n
731 c( j ) = 1.0
732 END DO
733 END IF
734 END IF
735*
736* Scale the right hand side.
737*
738 IF( notran ) THEN
739 IF( rowequ ) CALL slascl2(n, nrhs, r, b, ldb)
740 ELSE
741 IF( colequ ) CALL slascl2(n, nrhs, c, b, ldb)
742 END IF
743*
744 IF( nofact .OR. equil ) THEN
745*
746* Compute the LU factorization of A.
747*
748 DO 40, j = 1, n
749 DO 30, i = kl+1, 2*kl+ku+1
750 afb( i, j ) = ab( i-kl, j )
751 30 CONTINUE
752 40 CONTINUE
753 CALL sgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
754*
755* Return if INFO is non-zero.
756*
757 IF( info.GT.0 ) THEN
758*
759* Pivot in column INFO is exactly 0
760* Compute the reciprocal pivot growth factor of the
761* leading rank-deficient INFO columns of A.
762*
763 rpvgrw = sla_gbrpvgrw( n, kl, ku, info, ab, ldab, afb,
764 $ ldafb )
765 RETURN
766 END IF
767 END IF
768*
769* Compute the reciprocal pivot growth factor RPVGRW.
770*
771 rpvgrw = sla_gbrpvgrw( n, kl, ku, n, ab, ldab, afb, ldafb )
772*
773* Compute the solution matrix X.
774*
775 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
776 CALL sgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
777 $ info )
778*
779* Use iterative refinement to improve the computed solution and
780* compute error bounds and backward error estimates for it.
781*
782 CALL sgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
783 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
784 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
785 $ work, iwork, info )
786*
787* Scale solutions.
788*
789 IF ( colequ .AND. notran ) THEN
790 CALL slascl2 ( n, nrhs, c, x, ldx )
791 ELSE IF ( rowequ .AND. .NOT.notran ) THEN
792 CALL slascl2 ( n, nrhs, r, x, ldx )
793 END IF
794*
795 RETURN
796*
797* End of SGBSVXX
798*
subroutine sgbequb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
SGBEQUB
Definition sgbequb.f:160
real function sla_gbrpvgrw(n, kl, ku, ncols, ab, ldab, afb, ldafb)
SLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
subroutine sgbrfsx(trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
SGBRFSX
Definition sgbrfsx.f:440
subroutine slascl2(m, n, d, x, ldx)
SLASCL2 performs diagonal scaling on a vector.
Definition slascl2.f:90