OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches

Functions

subroutine sptsv (n, nrhs, d, e, b, ldb, info)
  SPTSV computes the solution to system of linear equations A * X = B for PT matrices
subroutine sptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work, info)
  SPTSVX computes the solution to system of linear equations A * X = B for PT matrices

Detailed Description

This is the group of real solve driver functions for PT matrices

Function Documentation

◆ sptsv()

subroutine sptsv ( integer n,
integer nrhs,
real, dimension( * ) d,
real, dimension( * ) e,
real, dimension( ldb, * ) b,
integer ldb,
integer info )

SPTSV computes the solution to system of linear equations A * X = B for PT matrices

Download SPTSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SPTSV computes the solution to a real system of linear equations
!> A*X = B, where A is an N-by-N symmetric positive definite tridiagonal
!> matrix, and X and B are N-by-NRHS matrices.
!>
!> A is factored as A = L*D*L**T, and the factored form of A is then
!> used to solve the system of equations.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]D
!>          D is REAL array, dimension (N)
!>          On entry, the n diagonal elements of the tridiagonal matrix
!>          A.  On exit, the n diagonal elements of the diagonal matrix
!>          D from the factorization A = L*D*L**T.
!> 
[in,out]E
!>          E is REAL array, dimension (N-1)
!>          On entry, the (n-1) subdiagonal elements of the tridiagonal
!>          matrix A.  On exit, the (n-1) subdiagonal elements of the
!>          unit bidiagonal factor L from the L*D*L**T factorization of
!>          A.  (E can also be regarded as the superdiagonal of the unit
!>          bidiagonal factor U from the U**T*D*U factorization of A.)
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the leading minor of order i is not
!>                positive definite, and the solution has not been
!>                computed.  The factorization has not been completed
!>                unless i = N.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 113 of file sptsv.f.

114*
115* -- LAPACK driver routine --
116* -- LAPACK is a software package provided by Univ. of Tennessee, --
117* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
118*
119* .. Scalar Arguments ..
120 INTEGER INFO, LDB, N, NRHS
121* ..
122* .. Array Arguments ..
123 REAL B( LDB, * ), D( * ), E( * )
124* ..
125*
126* =====================================================================
127*
128* .. External Subroutines ..
129 EXTERNAL spttrf, spttrs, xerbla
130* ..
131* .. Intrinsic Functions ..
132 INTRINSIC max
133* ..
134* .. Executable Statements ..
135*
136* Test the input parameters.
137*
138 info = 0
139 IF( n.LT.0 ) THEN
140 info = -1
141 ELSE IF( nrhs.LT.0 ) THEN
142 info = -2
143 ELSE IF( ldb.LT.max( 1, n ) ) THEN
144 info = -6
145 END IF
146 IF( info.NE.0 ) THEN
147 CALL xerbla( 'SPTSV ', -info )
148 RETURN
149 END IF
150*
151* Compute the L*D*L**T (or U**T*D*U) factorization of A.
152*
153 CALL spttrf( n, d, e, info )
154 IF( info.EQ.0 ) THEN
155*
156* Solve the system A*X = B, overwriting B with X.
157*
158 CALL spttrs( n, nrhs, d, e, b, ldb, info )
159 END IF
160 RETURN
161*
162* End of SPTSV
163*
subroutine spttrf(n, d, e, info)
SPTTRF
Definition spttrf.f:91
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine spttrs(n, nrhs, d, e, b, ldb, info)
SPTTRS
Definition spttrs.f:109
#define max(a, b)
Definition macros.h:21

◆ sptsvx()

subroutine sptsvx ( character fact,
integer n,
integer nrhs,
real, dimension( * ) d,
real, dimension( * ) e,
real, dimension( * ) df,
real, dimension( * ) ef,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real rcond,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) work,
integer info )

SPTSVX computes the solution to system of linear equations A * X = B for PT matrices

Download SPTSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SPTSVX uses the factorization A = L*D*L**T to compute the solution
!> to a real system of linear equations A*X = B, where A is an N-by-N
!> symmetric positive definite tridiagonal matrix and X and B are
!> N-by-NRHS matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed:
!>
!> 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
!>    is a unit lower bidiagonal matrix and D is diagonal.  The
!>    factorization can also be regarded as having the form
!>    A = U**T*D*U.
!>
!> 2. If the leading i-by-i principal minor is not positive definite,
!>    then the routine returns with INFO = i. Otherwise, the factored
!>    form of A is used to estimate the condition number of the matrix
!>    A.  If the reciprocal of the condition number is less than machine
!>    precision, INFO = N+1 is returned as a warning, but the routine
!>    still goes on to solve for X and compute error bounds as
!>    described below.
!>
!> 3. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 4. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of A has been
!>          supplied on entry.
!>          = 'F':  On entry, DF and EF contain the factored form of A.
!>                  D, E, DF, and EF will not be modified.
!>          = 'N':  The matrix A will be copied to DF and EF and
!>                  factored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in]D
!>          D is REAL array, dimension (N)
!>          The n diagonal elements of the tridiagonal matrix A.
!> 
[in]E
!>          E is REAL array, dimension (N-1)
!>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
!> 
[in,out]DF
!>          DF is REAL array, dimension (N)
!>          If FACT = 'F', then DF is an input argument and on entry
!>          contains the n diagonal elements of the diagonal matrix D
!>          from the L*D*L**T factorization of A.
!>          If FACT = 'N', then DF is an output argument and on exit
!>          contains the n diagonal elements of the diagonal matrix D
!>          from the L*D*L**T factorization of A.
!> 
[in,out]EF
!>          EF is REAL array, dimension (N-1)
!>          If FACT = 'F', then EF is an input argument and on entry
!>          contains the (n-1) subdiagonal elements of the unit
!>          bidiagonal factor L from the L*D*L**T factorization of A.
!>          If FACT = 'N', then EF is an output argument and on exit
!>          contains the (n-1) subdiagonal elements of the unit
!>          bidiagonal factor L from the L*D*L**T factorization of A.
!> 
[in]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          The N-by-NRHS right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The reciprocal condition number of the matrix A.  If RCOND
!>          is less than the machine precision (in particular, if
!>          RCOND = 0), the matrix is singular to working precision.
!>          This condition is indicated by a return code of INFO > 0.
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in any
!>          element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is REAL array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is
!>                <= N:  the leading minor of order i of A is
!>                       not positive definite, so the factorization
!>                       could not be completed, and the solution has not
!>                       been computed. RCOND = 0 is returned.
!>                = N+1: U is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!>                       value of RCOND would suggest.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 226 of file sptsvx.f.

228*
229* -- LAPACK driver routine --
230* -- LAPACK is a software package provided by Univ. of Tennessee, --
231* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
232*
233* .. Scalar Arguments ..
234 CHARACTER FACT
235 INTEGER INFO, LDB, LDX, N, NRHS
236 REAL RCOND
237* ..
238* .. Array Arguments ..
239 REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
240 $ E( * ), EF( * ), FERR( * ), WORK( * ),
241 $ X( LDX, * )
242* ..
243*
244* =====================================================================
245*
246* .. Parameters ..
247 REAL ZERO
248 parameter( zero = 0.0e+0 )
249* ..
250* .. Local Scalars ..
251 LOGICAL NOFACT
252 REAL ANORM
253* ..
254* .. External Functions ..
255 LOGICAL LSAME
256 REAL SLAMCH, SLANST
257 EXTERNAL lsame, slamch, slanst
258* ..
259* .. External Subroutines ..
260 EXTERNAL scopy, slacpy, sptcon, sptrfs, spttrf, spttrs,
261 $ xerbla
262* ..
263* .. Intrinsic Functions ..
264 INTRINSIC max
265* ..
266* .. Executable Statements ..
267*
268* Test the input parameters.
269*
270 info = 0
271 nofact = lsame( fact, 'N' )
272 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
273 info = -1
274 ELSE IF( n.LT.0 ) THEN
275 info = -2
276 ELSE IF( nrhs.LT.0 ) THEN
277 info = -3
278 ELSE IF( ldb.LT.max( 1, n ) ) THEN
279 info = -9
280 ELSE IF( ldx.LT.max( 1, n ) ) THEN
281 info = -11
282 END IF
283 IF( info.NE.0 ) THEN
284 CALL xerbla( 'SPTSVX', -info )
285 RETURN
286 END IF
287*
288 IF( nofact ) THEN
289*
290* Compute the L*D*L**T (or U**T*D*U) factorization of A.
291*
292 CALL scopy( n, d, 1, df, 1 )
293 IF( n.GT.1 )
294 $ CALL scopy( n-1, e, 1, ef, 1 )
295 CALL spttrf( n, df, ef, info )
296*
297* Return if INFO is non-zero.
298*
299 IF( info.GT.0 )THEN
300 rcond = zero
301 RETURN
302 END IF
303 END IF
304*
305* Compute the norm of the matrix A.
306*
307 anorm = slanst( '1', n, d, e )
308*
309* Compute the reciprocal of the condition number of A.
310*
311 CALL sptcon( n, df, ef, anorm, rcond, work, info )
312*
313* Compute the solution vectors X.
314*
315 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
316 CALL spttrs( n, nrhs, df, ef, x, ldx, info )
317*
318* Use iterative refinement to improve the computed solutions and
319* compute error bounds and backward error estimates for them.
320*
321 CALL sptrfs( n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr,
322 $ work, info )
323*
324* Set INFO = N+1 if the matrix is singular to working precision.
325*
326 IF( rcond.LT.slamch( 'Epsilon' ) )
327 $ info = n + 1
328*
329 RETURN
330*
331* End of SPTSVX
332*
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
real function slanst(norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slanst.f:100
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
subroutine sptcon(n, d, e, anorm, rcond, work, info)
SPTCON
Definition sptcon.f:118
subroutine sptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
SPTRFS
Definition sptrfs.f:163
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68