176 SUBROUTINE slaqps( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
177 $ VN2, AUXV, F, LDF )
188 REAL A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
196 parameter( zero = 0.0e+0, one = 1.0e+0 )
199 INTEGER ITEMP, J, K, , LSTICC, PVT, RK
200 REAL AKK, TEMP, TEMP2,
206 INTRINSIC abs,
max,
min, nint, real, sqrt
211 EXTERNAL isamax, slamch, snrm2
215 lastrk =
min( m, n+offset )
218 tol3z = sqrt(slamch(
'Epsilon'))
223 IF( ( k.LT.nb ) .AND. ( lsticc.EQ.0 ) )
THEN
229 pvt = ( k-1 ) + isamax( n-k+1, vn1( k ), 1 )
231 CALL sswap( m, a( 1, pvt ), 1, a( 1, k ), 1 )
232 CALL sswap( k-1, f( pvt, 1 ), ldf, f( k, 1 ), ldf )
234 jpvt( pvt ) = jpvt( k )
236 vn1( pvt ) = vn1( k )
237 vn2( pvt ) = vn2( k )
244 CALL sgemv(
'No transpose', m-rk+1, k-1, -one, a( rk, 1 ),
245 $ lda, f( k, 1 ), ldf, one, a( rk, k ), 1 )
251 CALL slarfg( m-rk+1, a( rk, k ), a( rk+1, k ), 1, tau( k ) )
253 CALL slarfg( 1, a( rk, k ), a( rk, k ), 1, tau( k ) )
264 CALL sgemv(
'Transpose', m-rk+1, n-k, tau( k ),
265 $ a( rk, k+1 ), lda, a( rk, k ), 1, zero,
280 CALL sgemv(
'Transpose', m-rk+1, k-1, -tau( k ), a( rk, 1 ),
281 $ lda, a( rk, k ), 1, zero, auxv( 1 ), 1 )
283 CALL sgemv(
'No transpose', n, k-1, one, f( 1, 1 ), ldf,
284 $ auxv( 1 ), 1, one, f( 1, k ), 1 )
291 CALL sgemv(
'No transpose', n-k, k, -one, f( k+1, 1 ), ldf,
292 $ a( rk, 1 ), lda, one, a( rk, k+1 ), lda )
297 IF( rk.LT.lastrk )
THEN
299 IF( vn1( j ).NE.zero )
THEN
304 temp = abs( a( rk, j ) ) / vn1( j )
305 temp =
max( zero, ( one+temp )*( one-temp ) )
306 temp2 = temp*( vn1( j ) / vn2( j ) )**2
307 IF( temp2 .LE. tol3z )
THEN
308 vn2( j ) = real( lsticc )
311 vn1( j ) = vn1( j )*sqrt( temp )
330 IF( kb.LT.
min( n, m-offset ) )
THEN
331 CALL sgemm(
'No transpose',
'Transpose', m-rk, n-kb, kb, -one,
332 $ a( rk+1, 1 ), lda, f( kb+1, 1 ), ldf, one,
333 $ a( rk+1, kb+1 ), lda )
339 IF( lsticc.GT.0 )
THEN
340 itemp = nint( vn2( lsticc ) )
341 vn1( lsticc ) = snrm2( m-rk, a( rk+1, lsticc ), 1 )
347 vn2( lsticc ) = vn1( lsticc )
subroutine slaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)
SLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BL...