130 RECURSIVE SUBROUTINE zgelqt3( M, N, A, LDA, T, LDT, INFO )
137 INTEGER info, lda, m, n, ldt
140 COMPLEX*16 a( lda, * ), t( ldt, * )
147 parameter( one = (1.0d+00,0.0d+00) )
148 parameter( zero = (0.0d+00,0.0d+00))
151 INTEGER i, , j, j1, m1, m2, iinfo
161 ELSE IF( n .LT. m )
THEN
163 ELSE IF( lda .LT.
max( 1, m ) )
THEN
165 ELSE IF( ldt .LT.
max( 1, m ) )
THEN
169 CALL xerbla(
'ZGELQT3', -info )
177 CALL zlarfg( n, a, a( 1,
min( 2, n ) ), lda, t )
191 CALL zgelqt3( m1, n, a, lda, t, ldt, iinfo )
197 t( i+m1, j ) = a( i+m1, j )
200 CALL ztrmm(
'R',
'U',
'C',
'U', m2, m1, one,
201 & a, lda, t( i1, 1 ), ldt )
203 CALL zgemm(
'N',
'C', m2, m1, n-m1, one, a( i1, i1 ), lda,
204 & a( 1, i1 ), lda, one, t( i1, 1 ), ldt)
206 CALL ztrmm(
'R',
'U',
'N',
'N', m2, m1, one,
207 & t, ldt, t( i1, 1 ), ldt
209 CALL zgemm(
'N',
'N', m2, n-m1, m1, -one, t( i1, 1 ), ldt,
210 & a( 1, i1 ), lda, one, a( i1, i1 ), lda )
212 CALL ztrmm(
'R',
'U',
'N',
'U', m2, m1 , one,
213 & a, lda, t( i1, 1 ), ldt )
217 a( i+m1, j ) = a( i+m1, j ) - t( i+m1, j )
224 CALL zgelqt3( m2, n-m1, a( i1, i1 ), lda,
225 & t( i1, i1 ), ldt, iinfo )
231 t( j, i+m1 ) = (a( j, i+m1 ))
235 CALL ztrmm(
'R',
'U', 'c
', 'u
', M1, M2, ONE,
236 & A( I1, I1 ), LDA, T( 1, I1 ), LDT )
238 CALL ZGEMM( 'n
', 'c
', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
239 & A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
241 CALL ZTRMM( 'l
', 'u
', 'n
', 'n
', M1, M2, -ONE, T, LDT,
244 CALL ZTRMM( 'r
', 'u
', 'n
', 'n
', M1, M2, ONE,
245 & T( I1, I1 ), LDT, T( 1, I1 ), LDT )
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
recursive subroutine zgelqt3(m, n, a, lda, t, ldt, info)
ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact...