148 SUBROUTINE zgeqrfp( M, N, A, LDA, TAU, WORK, LWORK, INFO )
155 INTEGER INFO, LDA, LWORK, M, N
158 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
165 INTEGER I, , IINFO, IWS, K, LDWORK, LWKOPT, NB,
183 nb = ilaenv( 1,
'ZGEQRF',
' ', m, n, -1, -1 )
186 lquery = ( lwork.EQ.-1 )
189 ELSE IF( n.LT.0 )
THEN
191 ELSE IF( lda.LT.
max( 1, m ) )
THEN
193 ELSE IF( lwork.LT.
max( 1, n ) .AND. .NOT.lquery )
THEN
197 CALL xerbla(
'ZGEQRFP', -info )
199 ELSE IF( lquery )
THEN
214 IF( nb.GT.1 .AND. nb.LT.k )
THEN
218 nx =
max( 0, ilaenv( 3,
'ZGEQRF',
' ', m, n, -1, -1 ) )
225 IF( lwork.LT.iws )
THEN
231 nbmin =
max( 2, ilaenv( 2,
'ZGEQRF',
' ', m, n, -1,
237 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
241 DO 10 i = 1, k - nx, nb
242 ib =
min( k-i+1, nb )
247 CALL zgeqr2p( m-i+1, ib, a( i, i ), lda, tau( i ), work,
254 CALL zlarft(
'Forward',
'Columnwise', m-i+1, ib,
255 $ a( i, i ), lda, tau( i ), work, ldwork )
259 CALL zlarfb(
'Left',
'Conjugate transpose',
'Forward',
260 $
'Columnwise', m-i+1, n-i-ib+1, ib,
261 $ a( i, i ), lda, work, ldwork, a( i, i+ib ),
262 $ lda, work( ib+1 ), ldwork )
272 $
CALL zgeqr2p( m-i+1, n-i+1, a( i, i ), lda, tau( i ), work,
subroutine zgeqrfp(m, n, a, lda, tau, work, lwork, info)
ZGEQRFP
subroutine zgeqr2p(m, n, a, lda, tau, work, info)
ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elem...
subroutine zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
subroutine zlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH