OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zlqt05.f
Go to the documentation of this file.
1*> \brief \b ZLQT05
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZLQT05(M,N,L,NB,RESULT)
12*
13* .. Scalar Arguments ..
14* INTEGER LWORK, M, N, L, NB, LDT
15* .. Return values ..
16* DOUBLE PRECISION RESULT(6)
17*
18*
19*> \par Purpose:
20* =============
21*>
22*> \verbatim
23*>
24*> ZQRT05 tests ZTPLQT and ZTPMLQT.
25*> \endverbatim
26*
27* Arguments:
28* ==========
29*
30*> \param[in] M
31*> \verbatim
32*> M is INTEGER
33*> Number of rows in lower part of the test matrix.
34*> \endverbatim
35*>
36*> \param[in] N
37*> \verbatim
38*> N is INTEGER
39*> Number of columns in test matrix.
40*> \endverbatim
41*>
42*> \param[in] L
43*> \verbatim
44*> L is INTEGER
45*> The number of rows of the upper trapezoidal part the
46*> lower test matrix. 0 <= L <= M.
47*> \endverbatim
48*>
49*> \param[in] NB
50*> \verbatim
51*> NB is INTEGER
52*> Block size of test matrix. NB <= N.
53*> \endverbatim
54*>
55*> \param[out] RESULT
56*> \verbatim
57*> RESULT is DOUBLE PRECISION array, dimension (6)
58*> Results of each of the six tests below.
59*>
60*> RESULT(1) = | A - Q R |
61*> RESULT(2) = | I - Q^H Q |
62*> RESULT(3) = | Q C - Q C |
63*> RESULT(4) = | Q^H C - Q^H C |
64*> RESULT(5) = | C Q - C Q |
65*> RESULT(6) = | C Q^H - C Q^H |
66*> \endverbatim
67*
68* Authors:
69* ========
70*
71*> \author Univ. of Tennessee
72*> \author Univ. of California Berkeley
73*> \author Univ. of Colorado Denver
74*> \author NAG Ltd.
75*
76*> \ingroup double_lin
77*
78* =====================================================================
79 SUBROUTINE zlqt05(M,N,L,NB,RESULT)
80 IMPLICIT NONE
81*
82* -- LAPACK test routine --
83* -- LAPACK is a software package provided by Univ. of Tennessee, --
84* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
85*
86* .. Scalar Arguments ..
87 INTEGER LWORK, M, N, L, NB, LDT
88* .. Return values ..
89 DOUBLE PRECISION RESULT(6)
90*
91* =====================================================================
92*
93* ..
94* .. Local allocatable arrays
95 COMPLEX*16, ALLOCATABLE :: AF(:,:), Q(:,:),
96 $ R(:,:), RWORK(:), WORK( : ), T(:,:),
97 $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
98*
99* .. Parameters ..
100 DOUBLE PRECISION ZERO
101 COMPLEX*16 ONE, CZERO
102 parameter( zero = 0.0, one = (1.0,0.0), czero=(0.0,0.0) )
103* ..
104* .. Local Scalars ..
105 INTEGER INFO, J, K, N2, NP1,i
106 DOUBLE PRECISION ANORM, EPS, RESID, CNORM, DNORM
107* ..
108* .. Local Arrays ..
109 INTEGER ISEED( 4 )
110* ..
111* .. External Functions ..
112 DOUBLE PRECISION DLAMCH
113 DOUBLE PRECISION ZLANGE, ZLANSY
114 LOGICAL LSAME
115 EXTERNAL dlamch, zlange, zlansy, lsame
116* ..
117* .. Data statements ..
118 DATA iseed / 1988, 1989, 1990, 1991 /
119*
120 eps = dlamch( 'Epsilon' )
121 k = m
122 n2 = m+n
123 IF( n.GT.0 ) THEN
124 np1 = m+1
125 ELSE
126 np1 = 1
127 END IF
128 lwork = n2*n2*nb
129*
130* Dynamically allocate all arrays
131*
132 ALLOCATE(a(m,n2),af(m,n2),q(n2,n2),r(n2,n2),rwork(n2),
133 $ work(lwork),t(nb,m),c(n2,m),cf(n2,m),
134 $ d(m,n2),df(m,n2) )
135*
136* Put random stuff into A
137*
138 ldt=nb
139 CALL zlaset( 'Full', m, n2, czero, czero, a, m )
140 CALL zlaset( 'full', NB, M, CZERO, CZERO, T, NB )
141 DO J=1,M
142 CALL ZLARNV( 2, ISEED, M-J+1, A( J, J ) )
143 END DO
144.GT. IF( N0 ) THEN
145 DO J=1,N-L
146 CALL ZLARNV( 2, ISEED, M, A( 1, MIN(N+M,M+1) + J - 1 ) )
147 END DO
148 END IF
149.GT. IF( L0 ) THEN
150 DO J=1,L
151 CALL ZLARNV( 2, ISEED, M-J+1, A( J, MIN(N+M,N+M-L+1)
152 $ + J - 1 ) )
153 END DO
154 END IF
155*
156* Copy the matrix A to the array AF.
157*
158 CALL ZLACPY( 'full', M, N2, A, M, AF, M )
159*
160* Factor the matrix A in the array AF.
161*
162 CALL ZTPLQT( M,N,L,NB,AF,M,AF(1,NP1),M,T,LDT,WORK,INFO)
163*
164* Generate the (M+N)-by-(M+N) matrix Q by applying H to I
165*
166 CALL ZLASET( 'full', N2, N2, CZERO, ONE, Q, N2 )
167 CALL ZGEMLQT( 'l', 'n', N2, N2, K, NB, AF, M, T, LDT, Q, N2,
168 $ WORK, INFO )
169*
170* Copy L
171*
172 CALL ZLASET( 'full', N2, N2, CZERO, CZERO, R, N2 )
173 CALL ZLACPY( 'lower', M, N2, AF, M, R, N2 )
174*
175* Compute |L - A*Q*C| / |A| and store in RESULT(1)
176*
177 CALL ZGEMM( 'n', 'c', M, N2, N2, -ONE, A, M, Q, N2, ONE, R, N2)
178 ANORM = ZLANGE( '1', M, N2, A, M, RWORK )
179 RESID = ZLANGE( '1', M, N2, R, N2, RWORK )
180.GT. IF( ANORMZERO ) THEN
181 RESULT( 1 ) = RESID / (EPS*ANORM*MAX(1,N2))
182 ELSE
183 RESULT( 1 ) = ZERO
184 END IF
185*
186* Compute |I - Q*Q'| and store in RESULT(2)
187*
188 CALL ZLASET( 'full', N2, N2, CZERO, ONE, R, N2 )
189 CALL ZHERK( 'u', 'n', N2, N2, DREAL(-ONE), Q, N2, DREAL(ONE),
190 $ R, N2 )
191 RESID = ZLANSY( '1', 'upper', N2, R, N2, RWORK )
192 RESULT( 2 ) = RESID / (EPS*MAX(1,N2))
193*
194* Generate random m-by-n matrix C and a copy CF
195*
196 CALL ZLASET( 'full', N2, M, CZERO, ONE, C, N2 )
197 DO J=1,M
198 CALL ZLARNV( 2, ISEED, N2, C( 1, J ) )
199 END DO
200 CNORM = ZLANGE( '1', N2, M, C, N2, RWORK)
201 CALL ZLACPY( 'full', N2, M, C, N2, CF, N2 )
202*
203* Apply Q to C as Q*C
204*
205 CALL ZTPMLQT( 'l','n', N,M,K,L,NB,AF(1, NP1),M,T,LDT,CF,N2,
206 $ CF(NP1,1),N2,WORK,INFO)
207*
208* Compute |Q*C - Q*C| / |C|
209*
210 CALL ZGEMM( 'n', 'n', N2, M, N2, -ONE, Q, N2, C, N2, ONE, CF, N2 )
211 RESID = ZLANGE( '1', N2, M, CF, N2, RWORK )
212.GT. IF( CNORMZERO ) THEN
213 RESULT( 3 ) = RESID / (EPS*MAX(1,N2)*CNORM)
214 ELSE
215 RESULT( 3 ) = ZERO
216 END IF
217
218*
219* Copy C into CF again
220*
221 CALL ZLACPY( 'full', N2, M, C, N2, CF, N2 )
222*
223* Apply Q to C as QT*C
224*
225 CALL ZTPMLQT( 'l','c',N,M,K,L,NB,AF(1,NP1),M,T,LDT,CF,N2,
226 $ CF(NP1,1),N2,WORK,INFO)
227*
228* Compute |QT*C - QT*C| / |C|
229*
230 CALL ZGEMM('c','n',N2,M,N2,-ONE,Q,N2,C,N2,ONE,CF,N2)
231 RESID = ZLANGE( '1', N2, M, CF, N2, RWORK )
232
233.GT. IF( CNORMZERO ) THEN
234 RESULT( 4 ) = RESID / (EPS*MAX(1,N2)*CNORM)
235 ELSE
236 RESULT( 4 ) = ZERO
237 END IF
238*
239* Generate random m-by-n matrix D and a copy DF
240*
241 DO J=1,N2
242 CALL ZLARNV( 2, ISEED, M, D( 1, J ) )
243 END DO
244 DNORM = ZLANGE( '1', M, N2, D, M, RWORK)
245 CALL ZLACPY( 'full', M, N2, D, M, DF, M )
246*
247* Apply Q to D as D*Q
248*
249 CALL ZTPMLQT('r','n',M,N,K,L,NB,AF(1,NP1),M,T,LDT,DF,M,
250 $ DF(1,NP1),M,WORK,INFO)
251*
252* Compute |D*Q - D*Q| / |D|
253*
254 CALL ZGEMM('n','n',M,N2,N2,-ONE,D,M,Q,N2,ONE,DF,M)
255 RESID = ZLANGE('1',M, N2,DF,M,RWORK )
256.GT. IF( CNORMZERO ) THEN
257 RESULT( 5 ) = RESID / (EPS*MAX(1,N2)*DNORM)
258 ELSE
259 RESULT( 5 ) = ZERO
260 END IF
261*
262* Copy D into DF again
263*
264 CALL ZLACPY('full',M,N2,D,M,DF,M )
265*
266* Apply Q to D as D*QT
267*
268 CALL ZTPMLQT('r','c',M,N,K,L,NB,AF(1,NP1),M,T,LDT,DF,M,
269 $ DF(1,NP1),M,WORK,INFO)
270
271*
272* Compute |D*QT - D*QT| / |D|
273*
274 CALL ZGEMM( 'n', 'c', M, N2, N2, -ONE, D, M, Q, N2, ONE, DF, M )
275 RESID = ZLANGE( '1', M, N2, DF, M, RWORK )
276.GT. IF( CNORMZERO ) THEN
277 RESULT( 6 ) = RESID / (EPS*MAX(1,N2)*DNORM)
278 ELSE
279 RESULT( 6 ) = ZERO
280 END IF
281*
282* Deallocate all arrays
283*
284 DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T, C, D, CF, DF)
285 RETURN
286 END
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
subroutine zlqt05(m, n, l, nb, result)
ZLQT05
Definition zlqt05.f:80