176 SUBROUTINE ztplqt2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
183 INTEGER INFO, LDA, LDB, LDT, N, M, L
186 COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * )
193 parameter( zero = ( 0.0d+0, 0.0d+0 ),one = ( 1.0d+0, 0.0d+0 ) )
196 INTEGER I, J, P, MP, NP
212 ELSE IF( n.LT.0 )
THEN
214 ELSE IF( l.LT.0 .OR. l.GT.
min(m,n) )
THEN
216 ELSE IF( lda.LT.
max( 1, m ) )
THEN
218 ELSE IF( ldb.LT.
max( 1, m ) )
THEN
220 ELSE IF( ldt.LT.
max( 1, m ) )
THEN
224 CALL xerbla(
'ZTPLQT2', -info )
230 IF( n.EQ.0 .OR. m.EQ.0 )
RETURN
237 CALL zlarfg( p+1, a( i, i ), b( i, 1 ), ldb, t( 1, i ) )
241 b( i, j ) = conjg(b(i,j))
247 t( m, j ) = (a( i+j, i ))
249 CALL zgemv(
'N', m-i, p, one, b( i+1, 1 ), ldb,
250 $ b( i, 1 ), ldb, one, t( m, 1 ), ldt )
256 a( i+j, i ) = a( i+j, i ) + alpha*(t( m, j ))
258 CALL zgerc( m-i, p, (alpha), t( m, 1 ), ldt,
259 $ b( i, 1 ), ldb, b( i+1, 1 ), ldb )
261 b( i, j ) = conjg(b(i,j))
284 t( i, j ) = (alpha*b( i, n-l+j ))
286 CALL ztrmv(
'L',
'N',
'N', p, b( 1, np ), ldb,
291 CALL zgemv(
'N', i-1-p, l, alpha, b( mp, np ), ldb,
292 $ b( i, np ), ldb, zero, t( i,mp ), ldt )
297 CALL zgemv(
'N', i-1, n-l, alpha, b, ldb, b( i, 1 ), ldb,
298 $ one, t( i, 1 ), ldt )
307 CALL ztrmv(
'L',
'C',
'N', i-1, t, ldt, t( i, 1 ), ldt )
317 t( i, i ) = t( 1, i )
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
subroutine ztplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
ZTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix,...