201 SUBROUTINE zunbdb1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
202 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
209 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
212 DOUBLE PRECISION (*), THETA(*)
213 COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
214 $ x11(ldx11,*), x21(ldx21,*)
221 parameter( one = (1.0d0,0.0d0) )
225 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
234 DOUBLE PRECISION DZNRM2
238 INTRINSIC atan2, cos,
max, sin, sqrt
245 lquery = lwork .EQ. -1
249 ELSE IF( p .LT. q .OR. m-p .LT. q )
THEN
251 ELSE IF( q .LT. 0 .OR. m-q .LT. q )
THEN
253 ELSE IF( ldx11 .LT.
max( 1, p ) )
THEN
255 ELSE IF( ldx21 .LT.
max( 1, m-p ) )
THEN
261 IF( info .EQ. 0 )
THEN
263 llarf =
max( p-1, m-p-1, q-1 )
266 lworkopt =
max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
269 IF( lwork .LT. lworkmin .AND. .NOT.lquery )
THEN
273 IF( info .NE. 0 )
THEN
274 CALL xerbla(
'ZUNBDB1', -info )
276 ELSE IF( lquery )
THEN
284 CALL zlarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
285 CALL zlarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
286 theta(i) = atan2( dble( x21(i,i) ), dble( x11(i,i) ) )
291 CALL zlarf(
'L', p-i+1, q-i, x11(i,i), 1, dconjg(taup1(i)),
292 $ x11(i,i+1), ldx11, work(ilarf) )
293 CALL zlarf(
'L', m-p-i+1, q-i, x21(i,i), 1, dconjg(taup2(i)),
294 $ x21(i,i+1), ldx21, work(ilarf) )
297 CALL zdrot( q-i, x11(i,i+1), ldx11, x21(i,i+1), ldx21, c,
299 CALL zlacgv( q-i, x21(i,i+1), ldx21 )
300 CALL zlarfgp( q-i, x21(i,i+1), x21(i,i+2), ldx21, tauq1(i) )
301 s = dble( x21(i,i+1) )
303 CALL zlarf(
'R', p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
304 $ x11(i+1,i+1), ldx11, work(ilarf) )
305 CALL zlarf(
'R', m-p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
306 $ x21(i+1,i+1), ldx21, work(ilarf) )
307 CALL zlacgv( q-i, x21(i,i+1), ldx21 )
308 c = sqrt( dznrm2( p-i, x11(i+1,i+1), 1 )**2
309 $ + dznrm2( m-p-i, x21(i+1,i+1), 1 )**2 )
310 phi(i) = atan2( s, c )
311 CALL zunbdb5( p-i, m-p-i, q-i-1, x11(i+1,i+1), 1,
312 $ x21(i+1,i+1), 1, x11(i+1,i+2), ldx11,
313 $ x21(i+1,i+2), ldx21, work(iorbdb5), lorbdb5,