OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zunmrz.f
Go to the documentation of this file.
1*> \brief \b ZUNMRZ
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZUNMRZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmrz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmrz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmrz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZUNMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
22* WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER SIDE, TRANS
26* INTEGER INFO, K, L, LDA, LDC, LWORK, M, N
27* ..
28* .. Array Arguments ..
29* COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> ZUNMRZ overwrites the general complex M-by-N matrix C with
39*>
40*> SIDE = 'L' SIDE = 'R'
41*> TRANS = 'N': Q * C C * Q
42*> TRANS = 'C': Q**H * C C * Q**H
43*>
44*> where Q is a complex unitary matrix defined as the product of k
45*> elementary reflectors
46*>
47*> Q = H(1) H(2) . . . H(k)
48*>
49*> as returned by ZTZRZF. Q is of order M if SIDE = 'L' and of order N
50*> if SIDE = 'R'.
51*> \endverbatim
52*
53* Arguments:
54* ==========
55*
56*> \param[in] SIDE
57*> \verbatim
58*> SIDE is CHARACTER*1
59*> = 'L': apply Q or Q**H from the Left;
60*> = 'R': apply Q or Q**H from the Right.
61*> \endverbatim
62*>
63*> \param[in] TRANS
64*> \verbatim
65*> TRANS is CHARACTER*1
66*> = 'N': No transpose, apply Q;
67*> = 'C': Conjugate transpose, apply Q**H.
68*> \endverbatim
69*>
70*> \param[in] M
71*> \verbatim
72*> M is INTEGER
73*> The number of rows of the matrix C. M >= 0.
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> The number of columns of the matrix C. N >= 0.
80*> \endverbatim
81*>
82*> \param[in] K
83*> \verbatim
84*> K is INTEGER
85*> The number of elementary reflectors whose product defines
86*> the matrix Q.
87*> If SIDE = 'L', M >= K >= 0;
88*> if SIDE = 'R', N >= K >= 0.
89*> \endverbatim
90*>
91*> \param[in] L
92*> \verbatim
93*> L is INTEGER
94*> The number of columns of the matrix A containing
95*> the meaningful part of the Householder reflectors.
96*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
97*> \endverbatim
98*>
99*> \param[in] A
100*> \verbatim
101*> A is COMPLEX*16 array, dimension
102*> (LDA,M) if SIDE = 'L',
103*> (LDA,N) if SIDE = 'R'
104*> The i-th row must contain the vector which defines the
105*> elementary reflector H(i), for i = 1,2,...,k, as returned by
106*> ZTZRZF in the last k rows of its array argument A.
107*> A is modified by the routine but restored on exit.
108*> \endverbatim
109*>
110*> \param[in] LDA
111*> \verbatim
112*> LDA is INTEGER
113*> The leading dimension of the array A. LDA >= max(1,K).
114*> \endverbatim
115*>
116*> \param[in] TAU
117*> \verbatim
118*> TAU is COMPLEX*16 array, dimension (K)
119*> TAU(i) must contain the scalar factor of the elementary
120*> reflector H(i), as returned by ZTZRZF.
121*> \endverbatim
122*>
123*> \param[in,out] C
124*> \verbatim
125*> C is COMPLEX*16 array, dimension (LDC,N)
126*> On entry, the M-by-N matrix C.
127*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
128*> \endverbatim
129*>
130*> \param[in] LDC
131*> \verbatim
132*> LDC is INTEGER
133*> The leading dimension of the array C. LDC >= max(1,M).
134*> \endverbatim
135*>
136*> \param[out] WORK
137*> \verbatim
138*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
139*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
140*> \endverbatim
141*>
142*> \param[in] LWORK
143*> \verbatim
144*> LWORK is INTEGER
145*> The dimension of the array WORK.
146*> If SIDE = 'L', LWORK >= max(1,N);
147*> if SIDE = 'R', LWORK >= max(1,M).
148*> For good performance, LWORK should generally be larger.
149*>
150*> If LWORK = -1, then a workspace query is assumed; the routine
151*> only calculates the optimal size of the WORK array, returns
152*> this value as the first entry of the WORK array, and no error
153*> message related to LWORK is issued by XERBLA.
154*> \endverbatim
155*>
156*> \param[out] INFO
157*> \verbatim
158*> INFO is INTEGER
159*> = 0: successful exit
160*> < 0: if INFO = -i, the i-th argument had an illegal value
161*> \endverbatim
162*
163* Authors:
164* ========
165*
166*> \author Univ. of Tennessee
167*> \author Univ. of California Berkeley
168*> \author Univ. of Colorado Denver
169*> \author NAG Ltd.
170*
171*> \ingroup complex16OTHERcomputational
172*
173*> \par Contributors:
174* ==================
175*>
176*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
177*
178*> \par Further Details:
179* =====================
180*>
181*> \verbatim
182*> \endverbatim
183*>
184* =====================================================================
185 SUBROUTINE zunmrz( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
186 $ WORK, LWORK, INFO )
187*
188* -- LAPACK computational routine --
189* -- LAPACK is a software package provided by Univ. of Tennessee, --
190* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191*
192* .. Scalar Arguments ..
193 CHARACTER SIDE, TRANS
194 INTEGER INFO, K, L, LDA, LDC, LWORK, M, N
195* ..
196* .. Array Arguments ..
197 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
198* ..
199*
200* =====================================================================
201*
202* .. Parameters ..
203 INTEGER NBMAX, LDT, TSIZE
204 parameter( nbmax = 64, ldt = nbmax+1,
205 $ tsize = ldt*nbmax )
206* ..
207* .. Local Scalars ..
208 LOGICAL LEFT, LQUERY, NOTRAN
209 CHARACTER TRANST
210 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JA, JC,
211 $ ldwork, lwkopt, mi, nb, nbmin, ni, nq, nw
212* ..
213* .. External Functions ..
214 LOGICAL LSAME
215 INTEGER ILAENV
216 EXTERNAL lsame, ilaenv
217* ..
218* .. External Subroutines ..
219 EXTERNAL xerbla, zlarzb, zlarzt, zunmr3
220* ..
221* .. Intrinsic Functions ..
222 INTRINSIC max, min
223* ..
224* .. Executable Statements ..
225*
226* Test the input arguments
227*
228 info = 0
229 left = lsame( side, 'L' )
230 notran = lsame( trans, 'N' )
231 lquery = ( lwork.EQ.-1 )
232*
233* NQ is the order of Q and NW is the minimum dimension of WORK
234*
235 IF( left ) THEN
236 nq = m
237 nw = max( 1, n )
238 ELSE
239 nq = n
240 nw = max( 1, m )
241 END IF
242 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
243 info = -1
244 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'c' ) ) THEN
245 INFO = -2
246.LT. ELSE IF( M0 ) THEN
247 INFO = -3
248.LT. ELSE IF( N0 ) THEN
249 INFO = -4
250.LT..OR..GT. ELSE IF( K0 KNQ ) THEN
251 INFO = -5
252.LT..OR..AND..GT..OR. ELSE IF( L0 ( LEFT ( LM ) )
253.NOT..AND..GT. $ ( LEFT ( LN ) ) ) THEN
254 INFO = -6
255.LT. ELSE IF( LDAMAX( 1, K ) ) THEN
256 INFO = -8
257.LT. ELSE IF( LDCMAX( 1, M ) ) THEN
258 INFO = -11
259.LT..AND..NOT. ELSE IF( LWORKMAX( 1, NW ) LQUERY ) THEN
260 INFO = -13
261 END IF
262*
263.EQ. IF( INFO0 ) THEN
264*
265* Compute the workspace requirements
266*
267.EQ..OR..EQ. IF( M0 N0 ) THEN
268 LWKOPT = 1
269 ELSE
270 NB = MIN( NBMAX, ILAENV( 1, 'zunmrq', SIDE // TRANS, M, N,
271 $ K, -1 ) )
272 LWKOPT = NW*NB + TSIZE
273 END IF
274 WORK( 1 ) = LWKOPT
275 END IF
276*
277.NE. IF( INFO0 ) THEN
278 CALL XERBLA( 'zunmrz', -INFO )
279 RETURN
280 ELSE IF( LQUERY ) THEN
281 RETURN
282 END IF
283*
284* Quick return if possible
285*
286.EQ..OR..EQ. IF( M0 N0 ) THEN
287 RETURN
288 END IF
289*
290* Determine the block size. NB may be at most NBMAX, where NBMAX
291* is used to define the local array T.
292*
293 NB = MIN( NBMAX, ILAENV( 1, 'zunmrq', SIDE // TRANS, M, N, K,
294 $ -1 ) )
295 NBMIN = 2
296 LDWORK = NW
297.GT..AND..LT. IF( NB1 NBK ) THEN
298.LT. IF( LWORKLWKOPT ) THEN
299 NB = (LWORK-TSIZE) / LDWORK
300 NBMIN = MAX( 2, ILAENV( 2, 'zunmrq', SIDE // TRANS, M, N, K,
301 $ -1 ) )
302 END IF
303 END IF
304*
305.LT..OR..GE. IF( NBNBMIN NBK ) THEN
306*
307* Use unblocked code
308*
309 CALL ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
310 $ WORK, IINFO )
311 ELSE
312*
313* Use blocked code
314*
315 IWT = 1 + NW*NB
316.AND..NOT..OR. IF( ( LEFT NOTRAN )
317.NOT..AND. $ ( LEFT NOTRAN ) ) THEN
318 I1 = 1
319 I2 = K
320 I3 = NB
321 ELSE
322 I1 = ( ( K-1 ) / NB )*NB + 1
323 I2 = 1
324 I3 = -NB
325 END IF
326*
327 IF( LEFT ) THEN
328 NI = N
329 JC = 1
330 JA = M - L + 1
331 ELSE
332 MI = M
333 IC = 1
334 JA = N - L + 1
335 END IF
336*
337 IF( NOTRAN ) THEN
338 TRANST = 'c'
339 ELSE
340 TRANST = 'n'
341 END IF
342*
343 DO 10 I = I1, I2, I3
344 IB = MIN( NB, K-I+1 )
345*
346* Form the triangular factor of the block reflector
347* H = H(i+ib-1) . . . H(i+1) H(i)
348*
349 CALL ZLARZT( 'backward', 'rowwise', L, IB, A( I, JA ), LDA,
350 $ TAU( I ), WORK( IWT ), LDT )
351*
352 IF( LEFT ) THEN
353*
354* H or H**H is applied to C(i:m,1:n)
355*
356 MI = M - I + 1
357 IC = I
358 ELSE
359*
360* H or H**H is applied to C(1:m,i:n)
361*
362 NI = N - I + 1
363 JC = I
364 END IF
365*
366* Apply H or H**H
367*
368 CALL ZLARZB( SIDE, TRANST, 'backward', 'rowwise', MI, NI,
369 $ IB, L, A( I, JA ), LDA, WORK( IWT ), LDT,
370 $ C( IC, JC ), LDC, WORK, LDWORK )
371 10 CONTINUE
372*
373 END IF
374*
375 WORK( 1 ) = LWKOPT
376*
377 RETURN
378*
379* End of ZUNMRZ
380*
381 END
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
subroutine zlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.
Definition zlarzt.f:185
subroutine zunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
ZUNMRZ
Definition zunmrz.f:187
subroutine zlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work, ldwork)
ZLARZB applies a block reflector or its conjugate-transpose to a general matrix.
Definition zlarzb.f:183
subroutine zunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)
ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf...
Definition zunmr3.f:178
subroutine zunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMRQ
Definition zunmrq.f:167
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21