OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
dgemlq.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dgemlq (side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
 DGEMLQ

Function/Subroutine Documentation

◆ dgemlq()

subroutine dgemlq ( character side,
character trans,
integer m,
integer n,
integer k,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) t,
integer tsize,
double precision, dimension( ldc, * ) c,
integer ldc,
double precision, dimension( * ) work,
integer lwork,
integer info )

DGEMLQ

Purpose:
!>
!>     DGEMLQ overwrites the general real M-by-N matrix C with
!>
!>                    SIDE = 'L'     SIDE = 'R'
!>    TRANS = 'N':      Q * C          C * Q
!>    TRANS = 'T':      Q**T * C       C * Q**T
!>    where Q is a real orthogonal matrix defined as the product
!>    of blocked elementary reflectors computed by short wide LQ
!>    factorization (DGELQ)
!>
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >=0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!>
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension
!>                               (LDA,M) if SIDE = 'L',
!>                               (LDA,N) if SIDE = 'R'
!>          Part of the data structure to represent Q as returned by DGELQ.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,K).
!> 
[in]T
!>          T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE)).
!>          Part of the data structure to represent Q as returned by DGELQ.
!> 
[in]TSIZE
!>          TSIZE is INTEGER
!>          The dimension of the array T. TSIZE >= 5.
!> 
[in,out]C
!>          C is DOUBLE PRECISION array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If LWORK = -1, then a workspace query is assumed. The routine
!>          only calculates the size of the WORK array, returns this
!>          value as WORK(1), and no error message related to WORK 
!>          is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
!>
!> These details are particular for this LAPACK implementation. Users should not 
!> take them for granted. These details may change in the future, and are not likely
!> true for another LAPACK implementation. These details are relevant if one wants
!> to try to understand the code. They are not part of the interface.
!>
!> In this version,
!>
!>          T(2): row block size (MB)
!>          T(3): column block size (NB)
!>          T(6:TSIZE): data structure needed for Q, computed by
!>                           DLASWLQ or DGELQT
!>
!>  Depending on the matrix dimensions M and N, and row and column
!>  block sizes MB and NB returned by ILAENV, DGELQ will use either
!>  DLASWLQ (if the matrix is wide-and-short) or DGELQT to compute
!>  the LQ factorization.
!>  This version of DGEMLQ will use either DLAMSWLQ or DGEMLQT to 
!>  multiply matrix Q by another matrix.
!>  Further Details in DLAMSWLQ or DGEMLQT.
!> 

Definition at line 169 of file dgemlq.f.

171*
172* -- LAPACK computational routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 CHARACTER SIDE, TRANS
178 INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
179* ..
180* .. Array Arguments ..
181 DOUBLE PRECISION A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
182* ..
183*
184* =====================================================================
185*
186* ..
187* .. Local Scalars ..
188 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
189 INTEGER MB, NB, LW, NBLCKS, MN
190* ..
191* .. External Functions ..
192 LOGICAL LSAME
193 EXTERNAL lsame
194* ..
195* .. External Subroutines ..
196 EXTERNAL dlamswlq, dgemlqt, xerbla
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC int, max, min, mod
200* ..
201* .. Executable Statements ..
202*
203* Test the input arguments
204*
205 lquery = lwork.EQ.-1
206 notran = lsame( trans, 'N' )
207 tran = lsame( trans, 'T' )
208 left = lsame( side, 'L' )
209 right = lsame( side, 'R' )
210*
211 mb = int( t( 2 ) )
212 nb = int( t( 3 ) )
213 IF( left ) THEN
214 lw = n * mb
215 mn = m
216 ELSE
217 lw = m * mb
218 mn = n
219 END IF
220*
221 IF( ( nb.GT.k ) .AND. ( mn.GT.k ) ) THEN
222 IF( mod( mn - k, nb - k ) .EQ. 0 ) THEN
223 nblcks = ( mn - k ) / ( nb - k )
224 ELSE
225 nblcks = ( mn - k ) / ( nb - k ) + 1
226 END IF
227 ELSE
228 nblcks = 1
229 END IF
230*
231 info = 0
232 IF( .NOT.left .AND. .NOT.right ) THEN
233 info = -1
234 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
235 info = -2
236 ELSE IF( m.LT.0 ) THEN
237 info = -3
238 ELSE IF( n.LT.0 ) THEN
239 info = -4
240 ELSE IF( k.LT.0 .OR. k.GT.mn ) THEN
241 info = -5
242 ELSE IF( lda.LT.max( 1, k ) ) THEN
243 info = -7
244 ELSE IF( tsize.LT.5 ) THEN
245 info = -9
246 ELSE IF( ldc.LT.max( 1, m ) ) THEN
247 info = -11
248 ELSE IF( ( lwork.LT.max( 1, lw ) ) .AND. ( .NOT.lquery ) ) THEN
249 info = -13
250 END IF
251*
252 IF( info.EQ.0 ) THEN
253 work( 1 ) = lw
254 END IF
255*
256 IF( info.NE.0 ) THEN
257 CALL xerbla( 'DGEMLQ', -info )
258 RETURN
259 ELSE IF( lquery ) THEN
260 RETURN
261 END IF
262*
263* Quick return if possible
264*
265 IF( min( m, n, k ).EQ.0 ) THEN
266 RETURN
267 END IF
268*
269 IF( ( left .AND. m.LE.k ) .OR. ( right .AND. n.LE.k )
270 $ .OR. ( nb.LE.k ) .OR. ( nb.GE.max( m, n, k ) ) ) THEN
271 CALL dgemlqt( side, trans, m, n, k, mb, a, lda,
272 $ t( 6 ), mb, c, ldc, work, info )
273 ELSE
274 CALL dlamswlq( side, trans, m, n, k, mb, nb, a, lda, t( 6 ),
275 $ mb, c, ldc, work, lwork, info )
276 END IF
277*
278 work( 1 ) = lw
279*
280 RETURN
281*
282* End of DGEMLQ
283*
subroutine dlamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
DLAMSWLQ
Definition dlamswlq.f:195
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
subroutine dgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
DGEMLQT
Definition dgemlqt.f:168
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21