OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
multi_evolve_partial.F
Go to the documentation of this file.
1Copyright> OpenRadioss
2Copyright> Copyright (C) 1986-2025 Altair Engineering Inc.
3Copyright>
4Copyright> This program is free software: you can redistribute it and/or modify
5Copyright> it under the terms of the GNU Affero General Public License as published by
6Copyright> the Free Software Foundation, either version 3 of the License, or
7Copyright> (at your option) any later version.
8Copyright>
9Copyright> This program is distributed in the hope that it will be useful,
10Copyright> but WITHOUT ANY WARRANTY; without even the implied warranty of
11Copyright> MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12Copyright> GNU Affero General Public License for more details.
13Copyright>
14Copyright> You should have received a copy of the GNU Affero General Public License
15Copyright> along with this program. If not, see <https://www.gnu.org/licenses/>.
16Copyright>
17Copyright>
18Copyright> Commercial Alternative: Altair Radioss Software
19Copyright>
20Copyright> As an alternative to this open-source version, Altair also offers Altair Radioss
21Copyright> software under a commercial license. Contact Altair to discuss further if the
22Copyright> commercial version may interest you: https://www.altair.com/radioss/.
23!||====================================================================
24!|| multi_evolve_partial ../engine/source/multifluid/multi_evolve_partial.F
25!||--- called by ------------------------------------------------------
26!|| multi_timeevolution ../engine/source/multifluid/multi_timeevolution.F
27!||--- uses -----------------------------------------------------
28!|| elbufdef_mod ../common_source/modules/mat_elem/elbufdef_mod.F90
29!|| element_mod ../common_source/modules/elements/element_mod.F90
30!|| initbuf_mod ../engine/share/resol/initbuf.F
31!|| multi_fvm_mod ../common_source/modules/ale/multi_fvm_mod.F90
32!||====================================================================
33 SUBROUTINE multi_evolve_partial(TIMESTEP, NG, ELBUF_TAB,
34 . IPARG, ITASK, IXS, IXQ, IXTG, MULTI_FVM,
35 . PM, IPM, GRAVITY, CURRENT_TIME)
36C-----------------------------------------------
37C M o d u l e s
38C-----------------------------------------------
39 USE initbuf_mod
40 USE elbufdef_mod
41 USE multi_fvm_mod
42 use element_mod , only : nixs,nixq,nixtg
43C-----------------------------------------------
44C I m p l i c i t T y p e s
45C-----------------------------------------------
46#include "implicit_f.inc"
47C-----------------------------------------------
48C C o m m o n B l o c k s
49C-----------------------------------------------
50#include "com01_c.inc"
51#include "param_c.inc"
52#include "mvsiz_p.inc"
53C-----------------------------------------------
54C D u m m y A r g u m e n t s
55C-----------------------------------------------
56 my_real, INTENT(IN) :: timestep
57 INTEGER, INTENT(IN) :: NG
58 TYPE(elbuf_struct_), TARGET, DIMENSION(NGROUP) :: ELBUF_TAB
59 INTEGER, INTENT(IN) :: IPARG(NPARG, *)
60 INTEGER, INTENT(IN) :: ITASK ! SMP TASK
61 INTEGER, INTENT(IN) :: IXS(NIXS, *), IXQ(NIXQ, *), IXTG(NIXTG, *)
62 TYPE(multi_fvm_struct), INTENT(INOUT) :: MULTI_FVM
63 my_real, INTENT(IN) :: pm(npropm, *)
64 INTEGER, INTENT(IN) :: IPM(NPROPMI, *)
65 my_real, INTENT(IN) :: gravity(4, *)
66 my_real, INTENT(IN) :: current_time
67C-----------------------------------------------
68C L o c a l V a r i a b l e s
69C-----------------------------------------------
70 TYPE(g_bufel_), POINTER :: GBUF
71 INTEGER :: II, I, J, JJ, KFACE, KFACE2, NB_FACE
72 INTEGER :: IPLA
73 my_real :: rho, etot, vel2, vol
74 my_real :: volnew(mvsiz)
75 my_real :: volfrac, massfrac, massfracii, massfracjj, eintii, eintjj
76 my_real :: volfracii, volfracjj
77 my_real :: massflux, ss, sumflux(3), tmp2, tmp3, tmp4, normal_vel
78 my_real :: sr, sl, sstar, surf, vii(3), vjj(3), fii(3), fjj(3)
79 my_real :: fiistar(3), fjjstar(3), viistar(3), vjjstar(3)
80 my_real :: normalw, nx, ny, nz
81 my_real :: normal_velii, normal_veljj
82 my_real :: alphaii, alphajj, rhoii, rhojj, rhoeii, rhoejj, pii, pjj
83 my_real :: alphastar, rhostar
84 my_real :: pstar, estar, pinf, gam, gravii(3)
85 INTEGER :: LOCAL_MATID, MATLAW, NVERTEX, NODEID, IMAT
86 my_real :: sum_normalvel, pshift
87 LOGICAL :: COMPUTED
88 TYPE(lbuf_ptr) :: LBUFS(MULTI_FVM%NBMAT)
89 INTEGER :: ISOLNOD, NEL, ITY, NFT
90C-----------------------------------------------
91C B e g i n n i n g o f s u b r o u t i n e
92C-----------------------------------------------
93
94 gbuf => elbuf_tab(ng)%GBUF
95 nel = iparg(2, ng)
96 nft = iparg(3, ng)
97 ity = iparg(5, ng)
98 isolnod = iparg(28, ng)
99
100 pshift = multi_fvm%PRES_SHIFT
101
102 IF (multi_fvm%NBMAT > 1) THEN
103!DIR$ NOVECTOR
104 DO imat = 1, multi_fvm%NBMAT
105 lbufs(imat)%LBUF => elbuf_tab(ng)%BUFLY(imat)%LBUF(1, 1, 1)
106 ENDDO
107 ENDIF
108 DO imat = 1, multi_fvm%NBMAT
109
110 IF (multi_fvm%SYM == 0) THEN
111 nb_face = 6
112 local_matid = ipm(20 + imat, ixs(1, 1 + nft))
113 ELSEIF (ity == 2) THEN
114C QUADS
115 nb_face = 4
116 local_matid = ipm(20 + imat, ixq(1, 1 + nft))
117 ELSEIF (ity == 7) THEN
118C TRIANGLES
119 nb_face = 3
120 local_matid = ipm(20 + imat, ixtg(1, 1 + nft))
121 ENDIF
122 matlaw = ipm(2, local_matid)
123
124C UPDATE
125 DO ii = 1, nel
126 i = ii + nft
127C SUM Flow
128 IF (multi_fvm%SYM == 0 .AND. isolnod /= 4) THEN
129C Volume flux
130 sumflux(1) = multi_fvm%SUBVOL_FLUXES(imat, 1, i) + multi_fvm%SUBVOL_FLUXES(imat, 2, i) +
131 . multi_fvm%SUBVOL_FLUXES(imat, 3, i) + multi_fvm%SUBVOL_FLUXES(imat, 4, i) +
132 . multi_fvm%SUBVOL_FLUXES(imat, 5, i) + multi_fvm%SUBVOL_FLUXES(imat, 6, i)
133C Mass flux
134 sumflux(2) = multi_fvm%SUBMASS_FLUXES(imat, 1, i) + multi_fvm%SUBMASS_FLUXES(imat, 2, i) +
135 . multi_fvm%SUBMASS_FLUXES(imat, 3, i) + multi_fvm%SUBMASS_FLUXES(imat, 4, i) +
136 . multi_fvm%SUBMASS_FLUXES(imat, 5, i) + multi_fvm%SUBMASS_FLUXES(imat, 6, i)
137C Energy flux
138 sumflux(3) = multi_fvm%SUBENER_FLUXES(imat, 1, i) + multi_fvm%SUBENER_FLUXES(imat, 2, i) +
139 . multi_fvm%SUBENER_FLUXES(imat, 3, i) + multi_fvm%SUBENER_FLUXES(imat, 4, i) +
140 . multi_fvm%SUBENER_FLUXES(imat, 5, i) + multi_fvm%SUBENER_FLUXES(imat, 6, i)
141 ELSEIF (isolnod == 4) THEN
142C Volume flux
143 sumflux(1) = multi_fvm%SUBVOL_FLUXES(imat, 5, i) + multi_fvm%SUBVOL_FLUXES(imat, 6, i) +
144 . multi_fvm%SUBVOL_FLUXES(imat, 2, i) + multi_fvm%SUBVOL_FLUXES(imat, 4, i)
145C Mass flux
146 sumflux(2) = multi_fvm%SUBMASS_FLUXES(imat, 5, i) + multi_fvm%SUBMASS_FLUXES(imat, 6, i) +
147 . multi_fvm%SUBMASS_FLUXES(imat, 2, i) + multi_fvm%SUBMASS_FLUXES(imat, 4, i)
148C Energy flux
149 sumflux(3) = multi_fvm%SUBENER_FLUXES(imat, 5, i) + multi_fvm%SUBENER_FLUXES(imat, 6, i) +
150 . multi_fvm%SUBENER_FLUXES(imat, 2, i) + multi_fvm%SUBENER_FLUXES(imat, 4, i)
151 ELSE
152C TRIANGLES
153C Volume flux
154 sumflux(1) = multi_fvm%SUBVOL_FLUXES(imat, 1, i) + multi_fvm%SUBVOL_FLUXES(imat, 2, i) +
155 . multi_fvm%SUBVOL_FLUXES(imat, 3, i)
156C Mass flux
157 sumflux(2) = multi_fvm%SUBMASS_FLUXES(imat, 1, i) + multi_fvm%SUBMASS_FLUXES(imat, 2, i) +
158 . multi_fvm%SUBMASS_FLUXES(imat, 3, i)
159C Energy flux
160 sumflux(3) = multi_fvm%SUBENER_FLUXES(imat, 1, i) + multi_fvm%SUBENER_FLUXES(imat, 2, i) +
161 . multi_fvm%SUBENER_FLUXES(imat, 3, i)
162 IF (ity == 2) THEN
163C QUADS
164C Volume flux
165 sumflux(1) = sumflux(1) + multi_fvm%SUBVOL_FLUXES(imat, 4, i)
166C Mass flux
167 sumflux(2) = sumflux(2) + multi_fvm%SUBMASS_FLUXES(imat, 4, i)
168C Energy flux
169 sumflux(3) = sumflux(3) + multi_fvm%SUBENER_FLUXES(imat, 4, i)
170 ENDIF
171 ENDIF
172
173 sum_normalvel = zero
174 IF (multi_fvm%SYM == 0 .AND. isolnod == 4) THEN
175 kface = 5
176 normal_vel = multi_fvm%FLUXES(6, kface, i)
177 sum_normalvel = sum_normalvel + normal_vel
178 kface = 6
179 normal_vel = multi_fvm%FLUXES(6, kface, i)
180 sum_normalvel = sum_normalvel + normal_vel
181 kface = 2
182 normal_vel = multi_fvm%FLUXES(6, kface, i)
183 sum_normalvel = sum_normalvel + normal_vel
184 kface = 4
185 normal_vel = multi_fvm%FLUXES(6, kface, i)
186 sum_normalvel = sum_normalvel + normal_vel
187 ELSE
188 DO kface = 1, nb_face
189 normal_vel = multi_fvm%FLUXES(6, kface, i)
190 sum_normalvel = sum_normalvel + normal_vel
191 ENDDO
192 ENDIF
193 alphaii = multi_fvm%PHASE_ALPHA(imat, i)
194 pii = multi_fvm%PHASE_PRES(imat, i)
195
196C Update massic fraction
197 tmp2 = lbufs(imat)%LBUF%VOL(ii) * lbufs(imat)%LBUF%RHO(ii) -
198 . timestep * sumflux(2)
199C Udate energy
200 tmp3 = lbufs(imat)%LBUF%VOL(ii) * lbufs(imat)%LBUF%EINT(ii) -
201 . timestep * (sumflux(3) + alphaii * (pii + pshift) * sum_normalvel)
202
203
204C Update volume
205 tmp4 = lbufs(imat)%LBUF%VOL(ii) -
206 . timestep * (sumflux(1) - alphaii * sum_normalvel)
207
208C Store volume in PHASE_ALPHA
209 multi_fvm%PHASE_ALPHA(imat, i) = tmp4
210C Store mass density in PHASE_RHO
211 multi_fvm%PHASE_RHO(imat, i) = tmp2
212C Store energy in PHASE_EINT
213 multi_fvm%PHASE_EINT(imat, i) = tmp3
214 ENDDO
215 ENDDO
216
217
218C-----------------------------------------------
219C E n d o f s u b r o u t i n e
220C-----------------------------------------------
221 END SUBROUTINE multi_evolve_partial
222
223
#define my_real
Definition cppsort.cpp:32
subroutine multi_evolve_partial(timestep, ng, elbuf_tab, iparg, itask, ixs, ixq, ixtg, multi_fvm, pm, ipm, gravity, current_time)