OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
multi_evolve_partial.F File Reference
#include "implicit_f.inc"
#include "com01_c.inc"
#include "param_c.inc"
#include "mvsiz_p.inc"

Go to the source code of this file.

Functions/Subroutines

subroutine multi_evolve_partial (timestep, ng, elbuf_tab, iparg, itask, ixs, ixq, ixtg, multi_fvm, pm, ipm, gravity, current_time)

Function/Subroutine Documentation

◆ multi_evolve_partial()

subroutine multi_evolve_partial ( intent(in) timestep,
integer, intent(in) ng,
type(elbuf_struct_), dimension(ngroup), target elbuf_tab,
integer, dimension(nparg, *), intent(in) iparg,
integer, intent(in) itask,
integer, dimension(nixs, *), intent(in) ixs,
integer, dimension(nixq, *), intent(in) ixq,
integer, dimension(nixtg, *), intent(in) ixtg,
type(multi_fvm_struct), intent(inout) multi_fvm,
dimension(npropm, *), intent(in) pm,
integer, dimension(npropmi, *), intent(in) ipm,
dimension(4, *), intent(in) gravity,
intent(in) current_time )

Definition at line 32 of file multi_evolve_partial.F.

35C-----------------------------------------------
36C M o d u l e s
37C-----------------------------------------------
38 USE initbuf_mod
39 USE elbufdef_mod
40 USE multi_fvm_mod
41C-----------------------------------------------
42C I m p l i c i t T y p e s
43C-----------------------------------------------
44#include "implicit_f.inc"
45C-----------------------------------------------
46C C o m m o n B l o c k s
47C-----------------------------------------------
48#include "com01_c.inc"
49#include "param_c.inc"
50#include "mvsiz_p.inc"
51C-----------------------------------------------
52C D u m m y A r g u m e n t s
53C-----------------------------------------------
54 my_real, INTENT(IN) :: timestep
55 INTEGER, INTENT(IN) :: NG
56 TYPE(ELBUF_STRUCT_), TARGET, DIMENSION(NGROUP) :: ELBUF_TAB
57 INTEGER, INTENT(IN) :: IPARG(NPARG, *)
58 INTEGER, INTENT(IN) :: ITASK ! SMP TASK
59 INTEGER, INTENT(IN) :: IXS(NIXS, *), IXQ(NIXQ, *), IXTG(NIXTG, *)
60 TYPE(MULTI_FVM_STRUCT), INTENT(INOUT) :: MULTI_FVM
61 my_real, INTENT(IN) :: pm(npropm, *)
62 INTEGER, INTENT(IN) :: IPM(NPROPMI, *)
63 my_real, INTENT(IN) :: gravity(4, *)
64 my_real, INTENT(IN) :: current_time
65C-----------------------------------------------
66C L o c a l V a r i a b l e s
67C-----------------------------------------------
68 TYPE(G_BUFEL_), POINTER :: GBUF
69 INTEGER :: II, I, J, JJ, KFACE, KFACE2, NB_FACE
70 INTEGER :: IPLA
71 my_real :: rho, etot, vel2, vol
72 my_real :: volnew(mvsiz)
73 my_real :: volfrac, massfrac, massfracii, massfracjj, eintii, eintjj
74 my_real :: volfracii, volfracjj
75 my_real :: massflux, ss, sumflux(3), tmp2, tmp3, tmp4, normal_vel
76 my_real :: sr, sl, sstar, surf, vii(3), vjj(3), fii(3), fjj(3)
77 my_real :: fiistar(3), fjjstar(3), viistar(3), vjjstar(3)
78 my_real :: normalw, nx, ny, nz
79 my_real :: normal_velii, normal_veljj
80 my_real :: alphaii, alphajj, rhoii, rhojj, rhoeii, rhoejj, pii, pjj
81 my_real :: alphastar, rhostar
82 my_real :: pstar, estar, pinf, gam, gravii(3)
83 INTEGER :: LOCAL_MATID, MATLAW, NVERTEX, NODEID, IMAT
84 my_real :: sum_normalvel, pshift
85 LOGICAL :: COMPUTED
86 TYPE(LBUF_PTR) :: LBUFS(MULTI_FVM%NBMAT)
87 INTEGER :: ISOLNOD, NEL, ITY, NFT
88C-----------------------------------------------
89C B e g i n n i n g o f s u b r o u t i n e
90C-----------------------------------------------
91
92 gbuf => elbuf_tab(ng)%GBUF
93 nel = iparg(2, ng)
94 nft = iparg(3, ng)
95 ity = iparg(5, ng)
96 isolnod = iparg(28, ng)
97
98 pshift = multi_fvm%PRES_SHIFT
99
100 IF (multi_fvm%NBMAT > 1) THEN
101!DIR$ NOVECTOR
102 DO imat = 1, multi_fvm%NBMAT
103 lbufs(imat)%LBUF => elbuf_tab(ng)%BUFLY(imat)%LBUF(1, 1, 1)
104 ENDDO
105 ENDIF
106 DO imat = 1, multi_fvm%NBMAT
107
108 IF (multi_fvm%SYM == 0) THEN
109 nb_face = 6
110 local_matid = ipm(20 + imat, ixs(1, 1 + nft))
111 ELSEIF (ity == 2) THEN
112C QUADS
113 nb_face = 4
114 local_matid = ipm(20 + imat, ixq(1, 1 + nft))
115 ELSEIF (ity == 7) THEN
116C TRIANGLES
117 nb_face = 3
118 local_matid = ipm(20 + imat, ixtg(1, 1 + nft))
119 ENDIF
120 matlaw = ipm(2, local_matid)
121
122C UPDATE
123 DO ii = 1, nel
124 i = ii + nft
125C Fluxes sum
126 IF (multi_fvm%SYM == 0 .AND. isolnod /= 4) THEN
127C Volume flux
128 sumflux(1) = multi_fvm%SUBVOL_FLUXES(imat, 1, i) + multi_fvm%SUBVOL_FLUXES(imat, 2, i) +
129 . multi_fvm%SUBVOL_FLUXES(imat, 3, i) + multi_fvm%SUBVOL_FLUXES(imat, 4, i) +
130 . multi_fvm%SUBVOL_FLUXES(imat, 5, i) + multi_fvm%SUBVOL_FLUXES(imat, 6, i)
131C Mass flux
132 sumflux(2) = multi_fvm%SUBMASS_FLUXES(imat, 1, i) + multi_fvm%SUBMASS_FLUXES(imat, 2, i) +
133 . multi_fvm%SUBMASS_FLUXES(imat, 3, i) + multi_fvm%SUBMASS_FLUXES(imat, 4, i) +
134 . multi_fvm%SUBMASS_FLUXES(imat, 5, i) + multi_fvm%SUBMASS_FLUXES(imat, 6, i)
135C Energy flux
136 sumflux(3) = multi_fvm%SUBENER_FLUXES(imat, 1, i) + multi_fvm%SUBENER_FLUXES(imat, 2, i) +
137 . multi_fvm%SUBENER_FLUXES(imat, 3, i) + multi_fvm%SUBENER_FLUXES(imat, 4, i) +
138 . multi_fvm%SUBENER_FLUXES(imat, 5, i) + multi_fvm%SUBENER_FLUXES(imat, 6, i)
139 ELSEIF (isolnod == 4) THEN
140C Volume flux
141 sumflux(1) = multi_fvm%SUBVOL_FLUXES(imat, 5, i) + multi_fvm%SUBVOL_FLUXES(imat, 6, i) +
142 . multi_fvm%SUBVOL_FLUXES(imat, 2, i) + multi_fvm%SUBVOL_FLUXES(imat, 4, i)
143C Mass flux
144 sumflux(2) = multi_fvm%SUBMASS_FLUXES(imat, 5, i) + multi_fvm%SUBMASS_FLUXES(imat, 6, i) +
145 . multi_fvm%SUBMASS_FLUXES(imat, 2, i) + multi_fvm%SUBMASS_FLUXES(imat, 4, i)
146C Energy flux
147 sumflux(3) = multi_fvm%SUBENER_FLUXES(imat, 5, i) + multi_fvm%SUBENER_FLUXES(imat, 6, i) +
148 . multi_fvm%SUBENER_FLUXES(imat, 2, i) + multi_fvm%SUBENER_FLUXES(imat, 4, i)
149 ELSE
150C TRIANGLES
151C Volume flux
152 sumflux(1) = multi_fvm%SUBVOL_FLUXES(imat, 1, i) + multi_fvm%SUBVOL_FLUXES(imat, 2, i) +
153 . multi_fvm%SUBVOL_FLUXES(imat, 3, i)
154C Mass flux
155 sumflux(2) = multi_fvm%SUBMASS_FLUXES(imat, 1, i) + multi_fvm%SUBMASS_FLUXES(imat, 2, i) +
156 . multi_fvm%SUBMASS_FLUXES(imat, 3, i)
157C Energy flux
158 sumflux(3) = multi_fvm%SUBENER_FLUXES(imat, 1, i) + multi_fvm%SUBENER_FLUXES(imat, 2, i) +
159 . multi_fvm%SUBENER_FLUXES(imat, 3, i)
160 IF (ity == 2) THEN
161C QUADS
162C Volume flux
163 sumflux(1) = sumflux(1) + multi_fvm%SUBVOL_FLUXES(imat, 4, i)
164C Mass flux
165 sumflux(2) = sumflux(2) + multi_fvm%SUBMASS_FLUXES(imat, 4, i)
166C Energy flux
167 sumflux(3) = sumflux(3) + multi_fvm%SUBENER_FLUXES(imat, 4, i)
168 ENDIF
169 ENDIF
170
171 sum_normalvel = zero
172 IF (multi_fvm%SYM == 0 .AND. isolnod == 4) THEN
173 kface = 5
174 normal_vel = multi_fvm%FLUXES(6, kface, i)
175 sum_normalvel = sum_normalvel + normal_vel
176 kface = 6
177 normal_vel = multi_fvm%FLUXES(6, kface, i)
178 sum_normalvel = sum_normalvel + normal_vel
179 kface = 2
180 normal_vel = multi_fvm%FLUXES(6, kface, i)
181 sum_normalvel = sum_normalvel + normal_vel
182 kface = 4
183 normal_vel = multi_fvm%FLUXES(6, kface, i)
184 sum_normalvel = sum_normalvel + normal_vel
185 ELSE
186 DO kface = 1, nb_face
187 normal_vel = multi_fvm%FLUXES(6, kface, i)
188 sum_normalvel = sum_normalvel + normal_vel
189 ENDDO
190 ENDIF
191 alphaii = multi_fvm%PHASE_ALPHA(imat, i)
192 pii = multi_fvm%PHASE_PRES(imat, i)
193
194C Update massic fraction
195 tmp2 = lbufs(imat)%LBUF%VOL(ii) * lbufs(imat)%LBUF%RHO(ii) -
196 . timestep * sumflux(2)
197C Udate energy
198 tmp3 = lbufs(imat)%LBUF%VOL(ii) * lbufs(imat)%LBUF%EINT(ii) -
199 . timestep * (sumflux(3) + alphaii * (pii + pshift) * sum_normalvel)
200
201
202C Update volume
203 tmp4 = lbufs(imat)%LBUF%VOL(ii) -
204 . timestep * (sumflux(1) - alphaii * sum_normalvel)
205
206C Store volume in PHASE_ALPHA
207 multi_fvm%PHASE_ALPHA(imat, i) = tmp4
208C Store mass density in PHASE_RHO
209 multi_fvm%PHASE_RHO(imat, i) = tmp2
210C Store energy in PHASE_EINT
211 multi_fvm%PHASE_EINT(imat, i) = tmp3
212 ENDDO
213 ENDDO
214
215
216C-----------------------------------------------
217C E n d o f s u b r o u t i n e
218C-----------------------------------------------
#define my_real
Definition cppsort.cpp:32