OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
nasg_mod Module Reference

Functions/Subroutines

subroutine nasg (iflag, nel, pmin, off, eint, mu, espe, dvol, vnew, psh, pnew, dpdm, dpde, eos_struct)

Function/Subroutine Documentation

◆ nasg()

subroutine nasg_mod::nasg ( integer, intent(in) iflag,
integer, intent(in) nel,
intent(in) pmin,
dimension(nel), intent(in) off,
dimension(nel), intent(inout) eint,
dimension(nel), intent(in) mu,
dimension(nel), intent(in) espe,
dimension(nel), intent(in) dvol,
dimension(nel), intent(in) vnew,
dimension(nel), intent(inout) psh,
dimension(nel), intent(inout) pnew,
dimension(nel), intent(inout) dpdm,
dimension(nel), intent(inout) dpde,
type(eos_param_), intent(in) eos_struct )

Definition at line 41 of file nasg.F.

45C-----------------------------------------------
46C M o d u l e s
47C-----------------------------------------------
48 USE constant_mod , ONLY : half,two,zero,one
49 USE eos_param_mod , ONLY : eos_param_
50C-----------------------------------------------
51C D e s c r i p t i o n
52C-----------------------------------------------
53C This subroutine contains numerical solving
54C of NOBLE ABEL STIFFENED GAS EOS
55C 2nd order integration in time
56!----------------------------------------------------------------------------
57!! \details STAGGERED SCHEME IS EXECUTED IN TWO PASSES IN EOSMAIN : IFLG=0 THEN IFLG=1
58!! \details COLLOCATED SCHEME IS DOING A SINGLE PASS : IFLG=2
59!! \details
60!! \details STAGGERED SCHEME
61!! \details EOSMAIN / IFLG = 0 : DERIVATIVE CALCULATION FOR SOUND SPEED ESTIMATION c[n+1] REQUIRED FOR PSEUDO-VISCOSITY (DPDE:partial derivative, DPDM:total derivative)
62!! \details MQVISCB : PSEUDO-VISCOSITY Q[n+1]
63!! \details MEINT : INTERNAL ENERGY INTEGRATION FOR E[n+1] : FIRST PART USING P[n], Q[n], and Q[n+1] CONTRIBUTIONS
64!! \details EOSMAIN / IFLG = 1 : UPDATE P[n+1], T[N+1]
65!! \details INTERNAL ENERGY INTEGRATION FOR E[n+1] : LAST PART USING P[n+1] CONTRIBUTION
66!! \details (second order integration dE = -P.dV where P = 0.5(P[n+1] + P[n]) )
67!! \details COLLOCATED SCHEME
68!! \details EOSMAIN / IFLG = 2 : SINGLE PASS FOR P[n+1] AND DERIVATIVES
69!----------------------------------------------------------------------------
70C-----------------------------------------------
71C I m p l i c i t T y p e s
72C-----------------------------------------------
73 IMPLICIT NONE
74#include "my_real.inc"
75C-----------------------------------------------
76C D u m m y A r g u m e n t s
77C-----------------------------------------------
78 INTEGER,INTENT(IN) :: IFLAG, NEL
79 my_real,INTENT(IN) :: pmin, off(nel) ,mu(nel) , espe(nel) ,dvol(nel) ,vnew(nel)
80 my_real, INTENT(INOUT) :: psh(nel), pnew(nel) ,dpdm(nel), dpde(nel), eint(nel)
81 TYPE(EOS_PARAM_),INTENT(IN) :: EOS_STRUCT
82C-----------------------------------------------
83C L o c a l V a r i a b l e s
84C-----------------------------------------------
85 INTEGER I
86 my_real :: p0,gamma,e0,aa,bb,pp,pstar,v0
87 my_real :: q,q_,rho0,num,denom,unpmu,b,rho
88C-----------------------------------------------
89C S o u r c e L i n e s
90C-----------------------------------------------
91 e0 = eos_struct%E0
92 psh(1:nel) = eos_struct%PSH
93 gamma = eos_struct%UPARAM(1)
94 p0 = eos_struct%UPARAM(2)
95 pstar = eos_struct%UPARAM(3)
96 q = eos_struct%UPARAM(4)
97 q_ = eos_struct%UPARAM(5)
98 b = eos_struct%UPARAM(6)
99 rho0 = eos_struct%UPARAM(7)
100
101 IF(iflag == 0) THEN
102 DO i=1,nel
103 unpmu = one+mu(i)
104 denom = (one-rho0*b*unpmu)
105 num = (espe(i)-rho0*q)
106 pp = (gamma-one)*unpmu*num/denom - gamma*pstar
107 dpde(i) = (gamma-one)*unpmu / denom !partial derivative
108 dpdm(i) = (gamma-one)*num/denom/denom + dpde(i)*(pp+psh(i))/unpmu/unpmu !total derivative
109 pnew(i) = max(pp,-gamma*pstar)*off(i) ! P(mu[n+1],E[n])
110 ENDDO
111
112 ELSEIF(iflag == 1) THEN
113 DO i=1,nel
114 eint(i) = eint(i) - half*dvol(i)*(pnew(i)+psh(i))
115 unpmu = one+mu(i)
116 rho = unpmu*rho0
117 v0 = vnew(i)*rho/rho0
118 denom = (vnew(i)/v0-rho0*b)
119 aa = (gamma-one)*(-rho0*q/denom)-gamma*pstar
120 bb = (gamma-one)/ denom
121 dpde(i) = bb !partial derivative
122 pnew(i) = (aa+bb*eint(i)/v0)/(one+bb*dvol(i)/two/v0) ! P(mu[n+1],E[n+1])
123 pnew(i) = max(pnew(i),-gamma*pstar)*off(i)
124 ENDDO
125
126 ELSEIF(iflag == 2) THEN
127 DO i=1, nel
128 IF (vnew(i) > zero) THEN
129 unpmu = one+mu(i)
130 denom = (one-rho0*b*unpmu)
131 num = (espe(i)-rho0*q)
132 pnew(i) = -psh(i) + (gamma-one)*unpmu*num/denom - gamma*pstar
133 pnew(i) = max(pnew(i),max(pmin, -gamma*pstar))*off(i)
134 dpde(i) = (gamma-one)*unpmu / denom !partial derivative
135 dpdm(i) = (gamma-one)*num/denom/denom + dpde(i)*(pnew(i)+psh(i))/unpmu/unpmu !total derivative
136 ENDIF
137 ENDDO
138
139 ENDIF
140C-----------------------------------------------
141 RETURN
#define my_real
Definition cppsort.cpp:32
#define max(a, b)
Definition macros.h:21