OpenRadioss 2025.1.11
OpenRadioss project
Loading...
Searching...
No Matches
zggsvd.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zggsvd (jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)
  ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices

Function/Subroutine Documentation

◆ zggsvd()

subroutine zggsvd ( character jobu,
character jobv,
character jobq,
integer m,
integer n,
integer p,
integer k,
integer l,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( * ) alpha,
double precision, dimension( * ) beta,
complex*16, dimension( ldu, * ) u,
integer ldu,
complex*16, dimension( ldv, * ) v,
integer ldv,
complex*16, dimension( ldq, * ) q,
integer ldq,
complex*16, dimension( * ) work,
double precision, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer info )

ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices

Download ZGGSVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> This routine is deprecated and has been replaced by routine ZGGSVD3.
!>
!> ZGGSVD computes the generalized singular value decomposition (GSVD)
!> of an M-by-N complex matrix A and P-by-N complex matrix B:
!>
!>       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )
!>
!> where U, V and Q are unitary matrices.
!> Let K+L = the effective numerical rank of the
!> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
!> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) 
!> matrices and of the following structures, respectively:
!>
!> If M-K-L >= 0,
!>
!>                     K  L
!>        D1 =     K ( I  0 )
!>                 L ( 0  C )
!>             M-K-L ( 0  0 )
!>
!>                   K  L
!>        D2 =   L ( 0  S )
!>             P-L ( 0  0 )
!>
!>                 N-K-L  K    L
!>   ( 0 R ) = K (  0   R11  R12 )
!>             L (  0    0   R22 )
!> where
!>
!>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
!>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
!>   C**2 + S**2 = I.
!>
!>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
!>
!> If M-K-L < 0,
!>
!>                   K M-K K+L-M
!>        D1 =   K ( I  0    0   )
!>             M-K ( 0  C    0   )
!>
!>                     K M-K K+L-M
!>        D2 =   M-K ( 0  S    0  )
!>             K+L-M ( 0  0    I  )
!>               P-L ( 0  0    0  )
!>
!>                    N-K-L  K   M-K  K+L-M
!>   ( 0 R ) =     K ( 0    R11  R12  R13  )
!>               M-K ( 0     0   R22  R23  )
!>             K+L-M ( 0     0    0   R33  )
!>
!> where
!>
!>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
!>   S = diag( BETA(K+1),  ... , BETA(M) ),
!>   C**2 + S**2 = I.
!>
!>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
!>   ( 0  R22 R23 )
!>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
!>
!> The routine computes C, S, R, and optionally the unitary
!> transformation matrices U, V and Q.
!>
!> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
!> A and B implicitly gives the SVD of A*inv(B):
!>                      A*inv(B) = U*(D1*inv(D2))*V**H.
!> If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also
!> equal to the CS decomposition of A and B. Furthermore, the GSVD can
!> be used to derive the solution of the eigenvalue problem:
!>                      A**H*A x = lambda* B**H*B x.
!> In some literature, the GSVD of A and B is presented in the form
!>                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
!> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
!> ``diagonal''.  The former GSVD form can be converted to the latter
!> form by taking the nonsingular matrix X as
!>
!>                       X = Q*(  I   0    )
!>                             (  0 inv(R) )
!> 
Parameters
[in]JOBU
!>          JOBU is CHARACTER*1
!>          = 'U':  Unitary matrix U is computed;
!>          = 'N':  U is not computed.
!> 
[in]JOBV
!>          JOBV is CHARACTER*1
!>          = 'V':  Unitary matrix V is computed;
!>          = 'N':  V is not computed.
!> 
[in]JOBQ
!>          JOBQ is CHARACTER*1
!>          = 'Q':  Unitary matrix Q is computed;
!>          = 'N':  Q is not computed.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrices A and B.  N >= 0.
!> 
[in]P
!>          P is INTEGER
!>          The number of rows of the matrix B.  P >= 0.
!> 
[out]K
!>          K is INTEGER
!> 
[out]L
!>          L is INTEGER
!>
!>          On exit, K and L specify the dimension of the subblocks
!>          described in Purpose.
!>          K + L = effective numerical rank of (A**H,B**H)**H.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, A contains the triangular matrix R, or part of R.
!>          See Purpose for details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,N)
!>          On entry, the P-by-N matrix B.
!>          On exit, B contains part of the triangular matrix R if
!>          M-K-L < 0.  See Purpose for details.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,P).
!> 
[out]ALPHA
!>          ALPHA is DOUBLE PRECISION array, dimension (N)
!> 
[out]BETA
!>          BETA is DOUBLE PRECISION array, dimension (N)
!>
!>          On exit, ALPHA and BETA contain the generalized singular
!>          value pairs of A and B;
!>            ALPHA(1:K) = 1,
!>            BETA(1:K)  = 0,
!>          and if M-K-L >= 0,
!>            ALPHA(K+1:K+L) = C,
!>            BETA(K+1:K+L)  = S,
!>          or if M-K-L < 0,
!>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
!>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
!>          and
!>            ALPHA(K+L+1:N) = 0
!>            BETA(K+L+1:N)  = 0
!> 
[out]U
!>          U is COMPLEX*16 array, dimension (LDU,M)
!>          If JOBU = 'U', U contains the M-by-M unitary matrix U.
!>          If JOBU = 'N', U is not referenced.
!> 
[in]LDU
!>          LDU is INTEGER
!>          The leading dimension of the array U. LDU >= max(1,M) if
!>          JOBU = 'U'; LDU >= 1 otherwise.
!> 
[out]V
!>          V is COMPLEX*16 array, dimension (LDV,P)
!>          If JOBV = 'V', V contains the P-by-P unitary matrix V.
!>          If JOBV = 'N', V is not referenced.
!> 
[in]LDV
!>          LDV is INTEGER
!>          The leading dimension of the array V. LDV >= max(1,P) if
!>          JOBV = 'V'; LDV >= 1 otherwise.
!> 
[out]Q
!>          Q is COMPLEX*16 array, dimension (LDQ,N)
!>          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
!>          If JOBQ = 'N', Q is not referenced.
!> 
[in]LDQ
!>          LDQ is INTEGER
!>          The leading dimension of the array Q. LDQ >= max(1,N) if
!>          JOBQ = 'Q'; LDQ >= 1 otherwise.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (max(3*N,M,P)+N)
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (2*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!>          On exit, IWORK stores the sorting information. More
!>          precisely, the following loop will sort ALPHA
!>             for I = K+1, min(M,K+L)
!>                 swap ALPHA(I) and ALPHA(IWORK(I))
!>             endfor
!>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
!>                converge.  For further details, see subroutine ZTGSJA.
!> 
Internal Parameters:
!>  TOLA    DOUBLE PRECISION
!>  TOLB    DOUBLE PRECISION
!>          TOLA and TOLB are the thresholds to determine the effective
!>          rank of (A**H,B**H)**H. Generally, they are set to
!>                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
!>                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
!>          The size of TOLA and TOLB may affect the size of backward
!>          errors of the decomposition.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 334 of file zggsvd.f.

337*
338* -- LAPACK driver routine --
339* -- LAPACK is a software package provided by Univ. of Tennessee, --
340* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
341*
342* .. Scalar Arguments ..
343 CHARACTER JOBQ, JOBU, JOBV
344 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
345* ..
346* .. Array Arguments ..
347 INTEGER IWORK( * )
348 DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
349 COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
350 $ U( LDU, * ), V( LDV, * ), WORK( * )
351* ..
352*
353* =====================================================================
354*
355* .. Local Scalars ..
356 LOGICAL WANTQ, WANTU, WANTV
357 INTEGER I, IBND, ISUB, J, NCYCLE
358 DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
359* ..
360* .. External Functions ..
361 LOGICAL LSAME
362 DOUBLE PRECISION DLAMCH, ZLANGE
363 EXTERNAL lsame, dlamch, zlange
364* ..
365* .. External Subroutines ..
366 EXTERNAL dcopy, xerbla, zggsvp, ztgsja
367* ..
368* .. Intrinsic Functions ..
369 INTRINSIC max, min
370* ..
371* .. Executable Statements ..
372*
373* Decode and test the input parameters
374*
375 wantu = lsame( jobu, 'U' )
376 wantv = lsame( jobv, 'V' )
377 wantq = lsame( jobq, 'Q' )
378*
379 info = 0
380 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
381 info = -1
382 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
383 info = -2
384 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
385 info = -3
386 ELSE IF( m.LT.0 ) THEN
387 info = -4
388 ELSE IF( n.LT.0 ) THEN
389 info = -5
390 ELSE IF( p.LT.0 ) THEN
391 info = -6
392 ELSE IF( lda.LT.max( 1, m ) ) THEN
393 info = -10
394 ELSE IF( ldb.LT.max( 1, p ) ) THEN
395 info = -12
396 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
397 info = -16
398 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
399 info = -18
400 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
401 info = -20
402 END IF
403 IF( info.NE.0 ) THEN
404 CALL xerbla( 'ZGGSVD', -info )
405 RETURN
406 END IF
407*
408* Compute the Frobenius norm of matrices A and B
409*
410 anorm = zlange( '1', m, n, a, lda, rwork )
411 bnorm = zlange( '1', p, n, b, ldb, rwork )
412*
413* Get machine precision and set up threshold for determining
414* the effective numerical rank of the matrices A and B.
415*
416 ulp = dlamch( 'Precision' )
417 unfl = dlamch( 'Safe Minimum' )
418 tola = max( m, n )*max( anorm, unfl )*ulp
419 tolb = max( p, n )*max( bnorm, unfl )*ulp
420*
421 CALL zggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
422 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
423 $ work, work( n+1 ), info )
424*
425* Compute the GSVD of two upper "triangular" matrices
426*
427 CALL ztgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
428 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
429 $ work, ncycle, info )
430*
431* Sort the singular values and store the pivot indices in IWORK
432* Copy ALPHA to RWORK, then sort ALPHA in RWORK
433*
434 CALL dcopy( n, alpha, 1, rwork, 1 )
435 ibnd = min( l, m-k )
436 DO 20 i = 1, ibnd
437*
438* Scan for largest ALPHA(K+I)
439*
440 isub = i
441 smax = rwork( k+i )
442 DO 10 j = i + 1, ibnd
443 temp = rwork( k+j )
444 IF( temp.GT.smax ) THEN
445 isub = j
446 smax = temp
447 END IF
448 10 CONTINUE
449 IF( isub.NE.i ) THEN
450 rwork( k+isub ) = rwork( k+i )
451 rwork( k+i ) = smax
452 iwork( k+i ) = k + isub
453 ELSE
454 iwork( k+i ) = k + i
455 END IF
456 20 CONTINUE
457*
458 RETURN
459*
460* End of ZGGSVD
461*
#define alpha
Definition eval.h:35
subroutine xerbla(srname, info)
XERBLA
Definition xerbla.f:60
logical function lsame(ca, cb)
LSAME
Definition lsame.f:53
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:115
subroutine zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
ZGGSVP
Definition zggsvp.f:265
subroutine ztgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
ZTGSJA
Definition ztgsja.f:379
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
#define min(a, b)
Definition macros.h:20
#define max(a, b)
Definition macros.h:21