Functions | |
| subroutine | cbdt01 (m, n, kd, a, lda, q, ldq, d, e, pt, ldpt, work, rwork, resid) |
| CBDT01 | |
| subroutine | cbdt02 (m, n, b, ldb, c, ldc, u, ldu, work, rwork, resid) |
| CBDT02 | |
| subroutine | cbdt03 (uplo, n, kd, d, e, u, ldu, s, vt, ldvt, work, resid) |
| CBDT03 | |
| subroutine | cchkbb (nsizes, mval, nval, nwdths, kk, ntypes, dotype, nrhs, iseed, thresh, nounit, a, lda, ab, ldab, bd, be, q, ldq, p, ldp, c, ldc, cc, work, lwork, rwork, result, info) |
| CCHKBB | |
| subroutine | cchkbd (nsizes, mval, nval, ntypes, dotype, nrhs, iseed, thresh, a, lda, bd, be, s1, s2, x, ldx, y, z, q, ldq, pt, ldpt, u, vt, work, lwork, rwork, nout, info) |
| CCHKBD | |
| subroutine | cchkbk (nin, nout) |
| CCHKBK | |
| subroutine | cchkbl (nin, nout) |
| CCHKBL | |
| subroutine | cchkec (thresh, tsterr, nin, nout) |
| CCHKEC | |
| program | cchkee |
| CCHKEE | |
| subroutine | cchkgg (nsizes, nn, ntypes, dotype, iseed, thresh, tstdif, thrshn, nounit, a, lda, b, h, t, s1, s2, p1, p2, u, ldu, v, q, z, alpha1, beta1, alpha3, beta3, evectl, evectr, work, lwork, rwork, llwork, result, info) |
| CCHKGG | |
| subroutine | cchkgk (nin, nout) |
| CCHKGK | |
| subroutine | cchkgl (nin, nout) |
| CCHKGL | |
| subroutine | cchkhb (nsizes, nn, nwdths, kk, ntypes, dotype, iseed, thresh, nounit, a, lda, sd, se, u, ldu, work, lwork, rwork, result, info) |
| CCHKHB | |
| subroutine | cchkhb2stg (nsizes, nn, nwdths, kk, ntypes, dotype, iseed, thresh, nounit, a, lda, sd, se, d1, d2, d3, u, ldu, work, lwork, rwork, result, info) |
| CCHKHB2STG | |
| subroutine | cchkhs (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, t1, t2, u, ldu, z, uz, w1, w3, evectl, evectr, evecty, evectx, uu, tau, work, nwork, rwork, iwork, select, result, info) |
| CCHKHS | |
| subroutine | cchkst (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, ap, sd, se, d1, d2, d3, d4, d5, wa1, wa2, wa3, wr, u, ldu, v, vp, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| CCHKST | |
| subroutine | cchkst2stg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, ap, sd, se, d1, d2, d3, d4, d5, wa1, wa2, wa3, wr, u, ldu, v, vp, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| CCHKST2STG | |
| subroutine | cckcsd (nm, mval, pval, qval, nmats, iseed, thresh, mmax, x, xf, u1, u2, v1t, v2t, theta, iwork, work, rwork, nin, nout, info) |
| CCKCSD | |
| subroutine | cckglm (nn, nval, mval, pval, nmats, iseed, thresh, nmax, a, af, b, bf, x, work, rwork, nin, nout, info) |
| CCKGLM | |
| subroutine | cckgqr (nm, mval, np, pval, nn, nval, nmats, iseed, thresh, nmax, a, af, aq, ar, taua, b, bf, bz, bt, bwk, taub, work, rwork, nin, nout, info) |
| CCKGQR | |
| subroutine | cckgsv (nm, mval, pval, nval, nmats, iseed, thresh, nmax, a, af, b, bf, u, v, q, alpha, beta, r, iwork, work, rwork, nin, nout, info) |
| CCKGSV | |
| subroutine | ccklse (nn, mval, pval, nval, nmats, iseed, thresh, nmax, a, af, b, bf, x, work, rwork, nin, nout, info) |
| CCKLSE | |
| subroutine | ccsdts (m, p, q, x, xf, ldx, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, theta, iwork, work, lwork, rwork, result) |
| CCSDTS | |
| subroutine | cdrges (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, alpha, beta, work, lwork, rwork, result, bwork, info) |
| CDRGES | |
| subroutine | cdrges3 (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, alpha, beta, work, lwork, rwork, result, bwork, info) |
| CDRGES3 | |
| subroutine | cdrgev (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, qe, ldqe, alpha, beta, alpha1, beta1, work, lwork, rwork, result, info) |
| CDRGEV | |
| subroutine | cdrgev3 (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, s, t, q, ldq, z, qe, ldqe, alpha, beta, alpha1, beta1, work, lwork, rwork, result, info) |
| CDRGEV3 | |
| subroutine | cdrgsx (nsize, ncmax, thresh, nin, nout, a, lda, b, ai, bi, z, q, alpha, beta, c, ldc, s, work, lwork, rwork, iwork, liwork, bwork, info) |
| CDRGSX | |
| subroutine | cdrgvx (nsize, thresh, nin, nout, a, lda, b, ai, bi, alpha, beta, vl, vr, ilo, ihi, lscale, rscale, s, stru, dif, diftru, work, lwork, rwork, iwork, liwork, result, bwork, info) |
| CDRGVX | |
| subroutine | cdrvbd (nsizes, mm, nn, ntypes, dotype, iseed, thresh, a, lda, u, ldu, vt, ldvt, asav, usav, vtsav, s, ssav, e, work, lwork, rwork, iwork, nounit, info) |
| CDRVBD | |
| subroutine | cdrves (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, ht, w, wt, vs, ldvs, result, work, nwork, rwork, iwork, bwork, info) |
| CDRVES | |
| subroutine | cdrvev (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, result, work, nwork, rwork, iwork, info) |
| CDRVEV | |
| subroutine | cdrvsg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, ldb, d, z, ldz, ab, bb, ap, bp, work, nwork, rwork, lrwork, iwork, liwork, result, info) |
| CDRVSG | |
| subroutine | cdrvsg2stg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, b, ldb, d, d2, z, ldz, ab, bb, ap, bp, work, nwork, rwork, lrwork, iwork, liwork, result, info) |
| CDRVSG2STG | |
| subroutine | cdrvst (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, d1, d2, d3, wa1, wa2, wa3, u, ldu, v, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| CDRVST | |
| subroutine | cdrvst2stg (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, d1, d2, d3, wa1, wa2, wa3, u, ldu, v, tau, z, work, lwork, rwork, lrwork, iwork, liwork, result, info) |
| CDRVST2STG | |
| subroutine | cdrvsx (nsizes, nn, ntypes, dotype, iseed, thresh, niunit, nounit, a, lda, h, ht, w, wt, wtmp, vs, ldvs, vs1, result, work, lwork, rwork, bwork, info) |
| CDRVSX | |
| subroutine | cdrvvx (nsizes, nn, ntypes, dotype, iseed, thresh, niunit, nounit, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, nwork, rwork, info) |
| CDRVVX | |
| subroutine | cerrbd (path, nunit) |
| CERRBD | |
| subroutine | cerrec (path, nunit) |
| CERREC | |
| subroutine | cerred (path, nunit) |
| CERRED | |
| subroutine | cerrgg (path, nunit) |
| CERRGG | |
| subroutine | cerrhs (path, nunit) |
| CERRHS | |
| subroutine | cerrst (path, nunit) |
| CERRST | |
| subroutine | cget02 (trans, m, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid) |
| CGET02 | |
| subroutine | cget10 (m, n, a, lda, b, ldb, work, rwork, result) |
| CGET10 | |
| subroutine | cget22 (transa, transe, transw, n, a, lda, e, lde, w, work, rwork, result) |
| CGET22 | |
| subroutine | cget23 (comp, isrt, balanc, jtype, thresh, iseed, nounit, n, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, lwork, rwork, info) |
| CGET23 | |
| subroutine | cget24 (comp, jtype, thresh, iseed, nounit, n, a, lda, h, ht, w, wt, wtmp, vs, ldvs, vs1, rcdein, rcdvin, nslct, islct, isrt, result, work, lwork, rwork, bwork, info) |
| CGET24 | |
| subroutine | cget35 (rmax, lmax, ninfo, knt, nin) |
| CGET35 | |
| subroutine | cget36 (rmax, lmax, ninfo, knt, nin) |
| CGET36 | |
| subroutine | cget37 (rmax, lmax, ninfo, knt, nin) |
| CGET37 | |
| subroutine | cget38 (rmax, lmax, ninfo, knt, nin) |
| CGET38 | |
| subroutine | cget51 (itype, n, a, lda, b, ldb, u, ldu, v, ldv, work, rwork, result) |
| CGET51 | |
| subroutine | cget52 (left, n, a, lda, b, ldb, e, lde, alpha, beta, work, rwork, result) |
| CGET52 | |
| subroutine | cget54 (n, a, lda, b, ldb, s, lds, t, ldt, u, ldu, v, ldv, work, result) |
| CGET54 | |
| subroutine | cglmts (n, m, p, a, af, lda, b, bf, ldb, d, df, x, u, work, lwork, rwork, result) |
| CGLMTS | |
| subroutine | cgqrts (n, m, p, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result) |
| CGQRTS | |
| subroutine | cgrqts (m, p, n, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result) |
| CGRQTS | |
| subroutine | cgsvts3 (m, p, n, a, af, lda, b, bf, ldb, u, ldu, v, ldv, q, ldq, alpha, beta, r, ldr, iwork, work, lwork, rwork, result) |
| CGSVTS3 | |
| subroutine | chbt21 (uplo, n, ka, ks, a, lda, d, e, u, ldu, work, rwork, result) |
| CHBT21 | |
| subroutine | chet21 (itype, uplo, n, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, rwork, result) |
| CHET21 | |
| subroutine | chet22 (itype, uplo, n, m, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, rwork, result) |
| CHET22 | |
| subroutine | chkxer (srnamt, infot, nout, lerr, ok) |
| CHKXER | |
| subroutine | chpt21 (itype, uplo, n, kband, ap, d, e, u, ldu, vp, tau, work, rwork, result) |
| CHPT21 | |
| subroutine | chst01 (n, ilo, ihi, a, lda, h, ldh, q, ldq, work, lwork, rwork, result) |
| CHST01 | |
| subroutine | clarfy (uplo, n, v, incv, tau, c, ldc, work) |
| CLARFY | |
| subroutine | clarhs (path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info) |
| CLARHS | |
| subroutine | clatm4 (itype, n, nz1, nz2, rsign, amagn, rcond, triang, idist, iseed, a, lda) |
| CLATM4 | |
| logical function | clctes (z, d) |
| CLCTES | |
| logical function | clctsx (alpha, beta) |
| CLCTSX | |
| subroutine | clsets (m, p, n, a, af, lda, b, bf, ldb, c, cf, d, df, x, work, lwork, rwork, result) |
| CLSETS | |
| subroutine | csbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy) |
| CSBMV | |
| subroutine | csgt01 (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, rwork, result) |
| CSGT01 | |
| logical function | cslect (z) |
| CSLECT | |
| subroutine | cstt21 (n, kband, ad, ae, sd, se, u, ldu, work, rwork, result) |
| CSTT21 | |
| subroutine | cstt22 (n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, rwork, result) |
| CSTT22 | |
| subroutine | cunt01 (rowcol, m, n, u, ldu, work, lwork, rwork, resid) |
| CUNT01 | |
| subroutine | cunt03 (rc, mu, mv, n, k, u, ldu, v, ldv, work, lwork, rwork, result, info) |
| CUNT03 | |
This is the group of complex LAPACK TESTING EIG routines.
| subroutine cbdt01 | ( | integer | m, |
| integer | n, | ||
| integer | kd, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( ldpt, * ) | pt, | ||
| integer | ldpt, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real | resid ) |
CBDT01
!> !> CBDT01 reconstructs a general matrix A from its bidiagonal form !> A = Q * B * P**H !> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary !> matrices and B is bidiagonal. !> !> The test ratio to test the reduction is !> RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> where EPS is the machine precision. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrices A and Q. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and P**H. !> |
| [in] | KD | !> KD is INTEGER !> If KD = 0, B is diagonal and the array E is not referenced. !> If KD = 1, the reduction was performed by xGEBRD; B is upper !> bidiagonal if M >= N, and lower bidiagonal if M < N. !> If KD = -1, the reduction was performed by xGBBRD; B is !> always upper bidiagonal. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The m by n matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | Q | !> Q is COMPLEX array, dimension (LDQ,N) !> The m by min(m,n) unitary matrix Q in the reduction !> A = Q * B * P**H. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,M). !> |
| [in] | D | !> D is REAL array, dimension (min(M,N)) !> The diagonal elements of the bidiagonal matrix B. !> |
| [in] | E | !> E is REAL array, dimension (min(M,N)-1) !> The superdiagonal elements of the bidiagonal matrix B if !> m >= n, or the subdiagonal elements of B if m < n. !> |
| [in] | PT | !> PT is COMPLEX array, dimension (LDPT,N) !> The min(m,n) by n unitary matrix P**H in the reduction !> A = Q * B * P**H. !> |
| [in] | LDPT | !> LDPT is INTEGER !> The leading dimension of the array PT. !> LDPT >= max(1,min(M,N)). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (M+N) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
| [out] | RESID | !> RESID is REAL !> The test ratio: !> norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> |
Definition at line 145 of file cbdt01.f.
| subroutine cbdt02 | ( | integer | m, |
| integer | n, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real | resid ) |
CBDT02
!> !> CBDT02 tests the change of basis C = U**H * B by computing the !> residual !> !> RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ), !> !> where B and C are M by N matrices, U is an M by M orthogonal matrix, !> and EPS is the machine precision. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrices B and C and the order of !> the matrix Q. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices B and C. !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,N) !> The m by n matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
| [in] | C | !> C is COMPLEX array, dimension (LDC,N) !> The m by n matrix C, assumed to contain U**H * B. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU,M) !> The m by m orthogonal matrix U. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (M) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
| [out] | RESID | !> RESID is REAL !> RESID = norm(B - U * C) / ( max(m,n) * norm(B) * EPS ), !> |
Definition at line 118 of file cbdt02.f.
| subroutine cbdt03 | ( | character | uplo, |
| integer | n, | ||
| integer | kd, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| real, dimension( * ) | s, | ||
| complex, dimension( ldvt, * ) | vt, | ||
| integer | ldvt, | ||
| complex, dimension( * ) | work, | ||
| real | resid ) |
CBDT03
!> !> CBDT03 reconstructs a bidiagonal matrix B from its SVD: !> S = U' * B * V !> where U and V are orthogonal matrices and S is diagonal. !> !> The test ratio to test the singular value decomposition is !> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS ) !> where VT = V' and EPS is the machine precision. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the matrix B is upper or lower bidiagonal. !> = 'U': Upper bidiagonal !> = 'L': Lower bidiagonal !> |
| [in] | N | !> N is INTEGER !> The order of the matrix B. !> |
| [in] | KD | !> KD is INTEGER !> The bandwidth of the bidiagonal matrix B. If KD = 1, the !> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is !> not referenced. If KD is greater than 1, it is assumed to be !> 1, and if KD is less than 0, it is assumed to be 0. !> |
| [in] | D | !> D is REAL array, dimension (N) !> The n diagonal elements of the bidiagonal matrix B. !> |
| [in] | E | !> E is REAL array, dimension (N-1) !> The (n-1) superdiagonal elements of the bidiagonal matrix B !> if UPLO = 'U', or the (n-1) subdiagonal elements of B if !> UPLO = 'L'. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU,N) !> The n by n orthogonal matrix U in the reduction B = U'*A*P. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,N) !> |
| [in] | S | !> S is REAL array, dimension (N) !> The singular values from the SVD of B, sorted in decreasing !> order. !> |
| [in] | VT | !> VT is COMPLEX array, dimension (LDVT,N) !> The n by n orthogonal matrix V' in the reduction !> B = U * S * V'. !> |
| [in] | LDVT | !> LDVT is INTEGER !> The leading dimension of the array VT. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (2*N) !> |
| [out] | RESID | !> RESID is REAL !> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS ) !> |
Definition at line 133 of file cbdt03.f.
| subroutine cchkbb | ( | integer | nsizes, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | nval, | ||
| integer | nwdths, | ||
| integer, dimension( * ) | kk, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer | nrhs, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldab, * ) | ab, | ||
| integer | ldab, | ||
| real, dimension( * ) | bd, | ||
| real, dimension( * ) | be, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( ldp, * ) | p, | ||
| integer | ldp, | ||
| complex, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex, dimension( ldc, * ) | cc, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CCHKBB
!> !> CCHKBB tests the reduction of a general complex rectangular band !> matrix to real bidiagonal form. !> !> CGBBRD factors a general band matrix A as Q B P* , where * means !> conjugate transpose, B is upper bidiagonal, and Q and P are unitary; !> CGBBRD can also overwrite a given matrix C with Q* C . !> !> For each pair of matrix dimensions (M,N) and each selected matrix !> type, an M by N matrix A and an M by NRHS matrix C are generated. !> The problem dimensions are as follows !> A: M x N !> Q: M x M !> P: N x N !> B: min(M,N) x min(M,N) !> C: M x NRHS !> !> For each generated matrix, 4 tests are performed: !> !> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' !> !> (2) | I - Q' Q | / ( M ulp ) !> !> (3) | I - PT PT' | / ( N ulp ) !> !> (4) | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. !> !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> The possible matrix types are !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (3), but multiplied by SQRT( overflow threshold ) !> (7) Same as (3), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U D V, where U and V are orthogonal and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U D V, where U and V are orthogonal and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U D V, where U and V are orthogonal and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Rectangular matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of values of M and N contained in the vectors !> MVAL and NVAL. The matrix sizes are used in pairs (M,N). !> If NSIZES is zero, CCHKBB does nothing. NSIZES must be at !> least zero. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NSIZES) !> The values of the matrix row dimension M. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NSIZES) !> The values of the matrix column dimension N. !> |
| [in] | NWDTHS | !> NWDTHS is INTEGER !> The number of bandwidths to use. If it is zero, !> CCHKBB does nothing. It must be at least zero. !> |
| [in] | KK | !> KK is INTEGER array, dimension (NWDTHS) !> An array containing the bandwidths to be used for the band !> matrices. The values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKBB !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns in the matrix C. !> If NRHS = 0, then the operations on the right-hand side will !> not be tested. NRHS must be at least 0. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKBB to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is REAL array, dimension !> (LDA, max(NN)) !> Used to hold the matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least max( NN ). !> |
| [out] | AB | !> AB is REAL array, dimension (LDAB, max(NN)) !> Used to hold A in band storage format. !> |
| [in] | LDAB | !> LDAB is INTEGER !> The leading dimension of AB. It must be at least 2 (not 1!) !> and at least max( KK )+1. !> |
| [out] | BD | !> BD is REAL array, dimension (max(NN)) !> Used to hold the diagonal of the bidiagonal matrix computed !> by CGBBRD. !> |
| [out] | BE | !> BE is REAL array, dimension (max(NN)) !> Used to hold the off-diagonal of the bidiagonal matrix !> computed by CGBBRD. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDQ, max(NN)) !> Used to hold the unitary matrix Q computed by CGBBRD. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q. It must be at least 1 !> and at least max( NN ). !> |
| [out] | P | !> P is COMPLEX array, dimension (LDP, max(NN)) !> Used to hold the unitary matrix P computed by CGBBRD. !> |
| [in] | LDP | !> LDP is INTEGER !> The leading dimension of P. It must be at least 1 !> and at least max( NN ). !> |
| [out] | C | !> C is COMPLEX array, dimension (LDC, max(NN)) !> Used to hold the matrix C updated by CGBBRD. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of U. It must be at least 1 !> and at least max( NN ). !> |
| [out] | CC | !> CC is COMPLEX array, dimension (LDC, max(NN)) !> Used to hold a copy of the matrix C. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( LDA+1, max(NN)+1 )*max(NN). !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (max(NN)) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (4) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 357 of file cchkbb.f.
| subroutine cchkbd | ( | integer | nsizes, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | nval, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer | nrhs, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | bd, | ||
| real, dimension( * ) | be, | ||
| real, dimension( * ) | s1, | ||
| real, dimension( * ) | s2, | ||
| complex, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex, dimension( ldx, * ) | y, | ||
| complex, dimension( ldx, * ) | z, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( ldpt, * ) | pt, | ||
| integer | ldpt, | ||
| complex, dimension( ldpt, * ) | u, | ||
| complex, dimension( ldpt, * ) | vt, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | nout, | ||
| integer | info ) |
CCHKBD
!> !> CCHKBD checks the singular value decomposition (SVD) routines. !> !> CGEBRD reduces a complex general m by n matrix A to real upper or !> lower bidiagonal form by an orthogonal transformation: Q' * A * P = B !> (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n !> and lower bidiagonal if m < n. !> !> CUNGBR generates the orthogonal matrices Q and P' from CGEBRD. !> Note that Q and P are not necessarily square. !> !> CBDSQR computes the singular value decomposition of the bidiagonal !> matrix B as B = U S V'. It is called three times to compute !> 1) B = U S1 V', where S1 is the diagonal matrix of singular !> values and the columns of the matrices U and V are the left !> and right singular vectors, respectively, of B. !> 2) Same as 1), but the singular values are stored in S2 and the !> singular vectors are not computed. !> 3) A = (UQ) S (P'V'), the SVD of the original matrix A. !> In addition, CBDSQR has an option to apply the left orthogonal matrix !> U to a matrix X, useful in least squares applications. !> !> For each pair of matrix dimensions (M,N) and each selected matrix !> type, an M by N matrix A and an M by NRHS matrix X are generated. !> The problem dimensions are as follows !> A: M x N !> Q: M x min(M,N) (but M x M if NRHS > 0) !> P: min(M,N) x N !> B: min(M,N) x min(M,N) !> U, V: min(M,N) x min(M,N) !> S1, S2 diagonal, order min(M,N) !> X: M x NRHS !> !> For each generated matrix, 14 tests are performed: !> !> Test CGEBRD and CUNGBR !> !> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' !> !> (2) | I - Q' Q | / ( M ulp ) !> !> (3) | I - PT PT' | / ( N ulp ) !> !> Test CBDSQR on bidiagonal matrix B !> !> (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' !> !> (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X !> and Z = U' Y. !> (6) | I - U' U | / ( min(M,N) ulp ) !> !> (7) | I - VT VT' | / ( min(M,N) ulp ) !> !> (8) S1 contains min(M,N) nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (9) 0 if the true singular values of B are within THRESH of !> those in S1. 2*THRESH if they are not. (Tested using !> SSVDCH) !> !> (10) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without !> computing U and V. !> !> Test CBDSQR on matrix A !> !> (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) !> !> (12) | X - (QU) Z | / ( |X| max(M,k) ulp ) !> !> (13) | I - (QU)'(QU) | / ( M ulp ) !> !> (14) | I - (VT PT) (PT'VT') | / ( N ulp ) !> !> The possible matrix types are !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (3), but multiplied by SQRT( overflow threshold ) !> (7) Same as (3), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U D V, where U and V are orthogonal and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U D V, where U and V are orthogonal and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U D V, where U and V are orthogonal and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Rectangular matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> Special case: !> (16) A bidiagonal matrix with random entries chosen from a !> logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each !> entry is e^x, where x is chosen uniformly on !> [ 2 log(ulp), -2 log(ulp) ] .) For *this* type: !> (a) CGEBRD is not called to reduce it to bidiagonal form. !> (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the !> matrix will be lower bidiagonal, otherwise upper. !> (c) only tests 5--8 and 14 are performed. !> !> A subset of the full set of matrix types may be selected through !> the logical array DOTYPE. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of values of M and N contained in the vectors !> MVAL and NVAL. The matrix sizes are used in pairs (M,N). !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension M. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NM) !> The values of the matrix column dimension N. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKBD !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrices are in A and B. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix !> of type j will be generated. If NTYPES is smaller than the !> maximum number of types defined (PARAMETER MAXTYP), then !> types NTYPES+1 through MAXTYP will not be generated. If !> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through !> DOTYPE(NTYPES) will be ignored. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns in the matrices X, Y, !> and Z, used in testing CBDSQR. If NRHS = 0, then the !> operations on the right-hand side will not be tested. !> NRHS must be at least 0. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The values of ISEED are changed on exit, and can be !> used in the next call to CCHKBD to continue the same random !> number sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. Note that the !> expected value of the test ratios is O(1), so THRESH should !> be a reasonably small multiple of 1, e.g., 10 or 100. !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA,NMAX) !> where NMAX is the maximum value of N in NVAL. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,MMAX), !> where MMAX is the maximum value of M in MVAL. !> |
| [out] | BD | !> BD is REAL array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | BE | !> BE is REAL array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | S1 | !> S1 is REAL array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | S2 | !> S2 is REAL array, dimension !> (max(min(MVAL(j),NVAL(j)))) !> |
| [out] | X | !> X is COMPLEX array, dimension (LDX,NRHS) !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the arrays X, Y, and Z. !> LDX >= max(1,MMAX). !> |
| [out] | Y | !> Y is COMPLEX array, dimension (LDX,NRHS) !> |
| [out] | Z | !> Z is COMPLEX array, dimension (LDX,NRHS) !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDQ,MMAX) !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,MMAX). !> |
| [out] | PT | !> PT is COMPLEX array, dimension (LDPT,NMAX) !> |
| [in] | LDPT | !> LDPT is INTEGER !> The leading dimension of the arrays PT, U, and V. !> LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). !> |
| [out] | U | !> U is COMPLEX array, dimension !> (LDPT,max(min(MVAL(j),NVAL(j)))) !> |
| [out] | VT | !> VT is COMPLEX array, dimension !> (LDPT,max(min(MVAL(j),NVAL(j)))) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all !> pairs (M,N)=(MM(j),NN(j)) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension !> (5*max(min(M,N))) !> |
| [in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some MM(j) < 0 !> -3: Some NN(j) < 0 !> -4: NTYPES < 0 !> -6: NRHS < 0 !> -8: THRESH < 0 !> -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). !> -17: LDB < 1 or LDB < MMAX. !> -21: LDQ < 1 or LDQ < MMAX. !> -23: LDP < 1 or LDP < MNMAX. !> -27: LWORK too small. !> If CLATMR, CLATMS, CGEBRD, CUNGBR, or CBDSQR, !> returns an error code, the !> absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> MMAX Largest value in NN. !> NMAX Largest value in NN. !> MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal !> matrix.) !> MNMAX The maximum value of MNMIN for j=1,...,NSIZES. !> NFAIL The number of tests which have exceeded THRESH !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> ULP, ULPINV Finest relative precision and its inverse. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 411 of file cchkbd.f.
| subroutine cchkbk | ( | integer | nin, |
| integer | nout ) |
CCHKBK
!> !> CCHKBK tests CGEBAK, a routine for backward transformation of !> the computed right or left eigenvectors if the original matrix !> was preprocessed by balance subroutine CGEBAL. !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 54 of file cchkbk.f.
| subroutine cchkbl | ( | integer | nin, |
| integer | nout ) |
CCHKBL
!> !> CCHKBL tests CGEBAL, a routine for balancing a general complex !> matrix and isolating some of its eigenvalues. !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 53 of file cchkbl.f.
| subroutine cchkec | ( | real | thresh, |
| logical | tsterr, | ||
| integer | nin, | ||
| integer | nout ) |
CCHKEC
!> !> CCHKEC tests eigen- condition estimation routines !> CTRSYL, CTREXC, CTRSNA, CTRSEN !> !> In all cases, the routine runs through a fixed set of numerical !> examples, subjects them to various tests, and compares the test !> results to a threshold THRESH. In addition, CTRSNA and CTRSEN are !> tested by reading in precomputed examples from a file (on input unit !> NIN). Output is written to output unit NOUT. !>
| [in] | THRESH | !> THRESH is REAL !> Threshold for residual tests. A computed test ratio passes !> the threshold if it is less than THRESH. !> |
| [in] | TSTERR | !> TSTERR is LOGICAL !> Flag that indicates whether error exits are to be tested. !> |
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. !> |
Definition at line 74 of file cchkec.f.
| program cchkee |
CCHKEE
!> !> CCHKEE tests the COMPLEX LAPACK subroutines for the matrix !> eigenvalue problem. The test paths in this version are !> !> NEP (Nonsymmetric Eigenvalue Problem): !> Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR !> !> SEP (Hermitian Eigenvalue Problem): !> Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC, !> and drivers CHEEV(X), CHBEV(X), CHPEV(X), !> CHEEVD, CHBEVD, CHPEVD !> !> SVD (Singular Value Decomposition): !> Test CGEBRD, CUNGBR, and CBDSQR !> and the drivers CGESVD, CGESDD !> !> CEV (Nonsymmetric Eigenvalue/eigenvector Driver): !> Test CGEEV !> !> CES (Nonsymmetric Schur form Driver): !> Test CGEES !> !> CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): !> Test CGEEVX !> !> CSX (Nonsymmetric Schur form Expert Driver): !> Test CGEESX !> !> CGG (Generalized Nonsymmetric Eigenvalue Problem): !> Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC !> !> CGS (Generalized Nonsymmetric Schur form Driver): !> Test CGGES !> !> CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): !> Test CGGEV !> !> CGX (Generalized Nonsymmetric Schur form Expert Driver): !> Test CGGESX !> !> CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): !> Test CGGEVX !> !> CSG (Hermitian Generalized Eigenvalue Problem): !> Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD, !> CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX !> !> CHB (Hermitian Band Eigenvalue Problem): !> Test CHBTRD !> !> CBB (Band Singular Value Decomposition): !> Test CGBBRD !> !> CEC (Eigencondition estimation): !> Test CTRSYL, CTREXC, CTRSNA, and CTRSEN !> !> CBL (Balancing a general matrix) !> Test CGEBAL !> !> CBK (Back transformation on a balanced matrix) !> Test CGEBAK !> !> CGL (Balancing a matrix pair) !> Test CGGBAL !> !> CGK (Back transformation on a matrix pair) !> Test CGGBAK !> !> GLM (Generalized Linear Regression Model): !> Tests CGGGLM !> !> GQR (Generalized QR and RQ factorizations): !> Tests CGGQRF and CGGRQF !> !> GSV (Generalized Singular Value Decomposition): !> Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT !> !> CSD (CS decomposition): !> Tests CUNCSD !> !> LSE (Constrained Linear Least Squares): !> Tests CGGLSE !> !> Each test path has a different set of inputs, but the data sets for !> the driver routines xEV, xES, xVX, and xSX can be concatenated in a !> single input file. The first line of input should contain one of the !> 3-character path names in columns 1-3. The number of remaining lines !> depends on what is found on the first line. !> !> The number of matrix types used in testing is often controllable from !> the input file. The number of matrix types for each path, and the !> test routine that describes them, is as follows: !> !> Path name(s) Types Test routine !> !> CHS or NEP 21 CCHKHS !> CST or SEP 21 CCHKST (routines) !> 18 CDRVST (drivers) !> CBD or SVD 16 CCHKBD (routines) !> 5 CDRVBD (drivers) !> CEV 21 CDRVEV !> CES 21 CDRVES !> CVX 21 CDRVVX !> CSX 21 CDRVSX !> CGG 26 CCHKGG (routines) !> CGS 26 CDRGES !> CGX 5 CDRGSX !> CGV 26 CDRGEV !> CXV 2 CDRGVX !> CSG 21 CDRVSG !> CHB 15 CCHKHB !> CBB 15 CCHKBB !> CEC - CCHKEC !> CBL - CCHKBL !> CBK - CCHKBK !> CGL - CCHKGL !> CGK - CCHKGK !> GLM 8 CCKGLM !> GQR 8 CCKGQR !> GSV 8 CCKGSV !> CSD 3 CCKCSD !> LSE 8 CCKLSE !> !>----------------------------------------------------------------------- !> !> NEP input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NPARMS, INTEGER !> Number of values of the parameters NB, NBMIN, NX, NS, and !> MAXB. !> !> line 5: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 6: NBMIN, INTEGER array, dimension (NPARMS) !> The values for the minimum blocksize NBMIN. !> !> line 7: NXVAL, INTEGER array, dimension (NPARMS) !> The values for the crossover point NX. !> !> line 8: INMIN, INTEGER array, dimension (NPARMS) !> LAHQR vs TTQRE crossover point, >= 11 !> !> line 9: INWIN, INTEGER array, dimension (NPARMS) !> recommended deflation window size !> !> line 10: INIBL, INTEGER array, dimension (NPARMS) !> nibble crossover point !> !> line 11: ISHFTS, INTEGER array, dimension (NPARMS) !> number of simultaneous shifts) !> !> line 12: IACC22, INTEGER array, dimension (NPARMS) !> select structured matrix multiply: 0, 1 or 2) !> !> line 13: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. To have all of the test !> ratios printed, use THRESH = 0.0 . !> !> line 14: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 14 was 2: !> !> line 15: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow !> the user to specify the matrix types. Each line contains !> a 3-character path name in columns 1-3, and the number !> of matrix types must be the first nonblank item in columns !> 4-80. If the number of matrix types is at least 1 but is !> less than the maximum number of possible types, a second !> line will be read to get the numbers of the matrix types to !> be used. For example, !> NEP 21 !> requests all of the matrix types for the nonsymmetric !> eigenvalue problem, while !> NEP 4 !> 9 10 11 12 !> requests only matrices of type 9, 10, 11, and 12. !> !> The valid 3-character path names are 'NEP' or 'CHS' for the !> nonsymmetric eigenvalue routines. !> !>----------------------------------------------------------------------- !> !> SEP or CSG input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NPARMS, INTEGER !> Number of values of the parameters NB, NBMIN, and NX. !> !> line 5: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 6: NBMIN, INTEGER array, dimension (NPARMS) !> The values for the minimum blocksize NBMIN. !> !> line 7: NXVAL, INTEGER array, dimension (NPARMS) !> The values for the crossover point NX. !> !> line 8: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 9: TSTCHK, LOGICAL !> Flag indicating whether or not to test the LAPACK routines. !> !> line 10: TSTDRV, LOGICAL !> Flag indicating whether or not to test the driver routines. !> !> line 11: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 12: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 12 was 2: !> !> line 13: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 13-EOF: Lines specifying matrix types, as for NEP. !> The valid 3-character path names are 'SEP' or 'CST' for the !> Hermitian eigenvalue routines and driver routines, and !> 'CSG' for the routines for the Hermitian generalized !> eigenvalue problem. !> !>----------------------------------------------------------------------- !> !> SVD input file: !> !> line 2: NN, INTEGER !> Number of values of M and N. !> !> line 3: MVAL, INTEGER array, dimension (NN) !> The values for the matrix row dimension M. !> !> line 4: NVAL, INTEGER array, dimension (NN) !> The values for the matrix column dimension N. !> !> line 5: NPARMS, INTEGER !> Number of values of the parameter NB, NBMIN, NX, and NRHS. !> !> line 6: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 7: NBMIN, INTEGER array, dimension (NPARMS) !> The values for the minimum blocksize NBMIN. !> !> line 8: NXVAL, INTEGER array, dimension (NPARMS) !> The values for the crossover point NX. !> !> line 9: NSVAL, INTEGER array, dimension (NPARMS) !> The values for the number of right hand sides NRHS. !> !> line 10: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 11: TSTCHK, LOGICAL !> Flag indicating whether or not to test the LAPACK routines. !> !> line 12: TSTDRV, LOGICAL !> Flag indicating whether or not to test the driver routines. !> !> line 13: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 14: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 14 was 2: !> !> line 15: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 15-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path names are 'SVD' or 'CBD' for both the !> SVD routines and the SVD driver routines. !> !>----------------------------------------------------------------------- !> !> CEV and CES data files: !> !> line 1: 'CEV' or 'CES' in columns 1 to 3. !> !> line 2: NSIZES, INTEGER !> Number of sizes of matrices to use. Should be at least 0 !> and at most 20. If NSIZES = 0, no testing is done !> (although the remaining 3 lines are still read). !> !> line 3: NN, INTEGER array, dimension(NSIZES) !> Dimensions of matrices to be tested. !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHSEQR !> NBCOL : minimum column dimension for blocking !> !> line 5: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> If it is 0., all test case data will be printed. !> !> line 6: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 8 and following: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'CEV' to test CGEEV, or !> 'CES' to test CGEES. !> !>----------------------------------------------------------------------- !> !> The CVX data has two parts. The first part is identical to CEV, !> and the second part consists of test matrices with precomputed !> solutions. !> !> line 1: 'CVX' in columns 1-3. !> !> line 2: NSIZES, INTEGER !> If NSIZES = 0, no testing of randomly generated examples !> is done, but any precomputed examples are tested. !> !> line 3: NN, INTEGER array, dimension(NSIZES) !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> !> line 5: THRESH, REAL !> !> line 6: NEWSD, INTEGER !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> !> lines 8 and following: The first line contains 'CVX' in columns 1-3 !> followed by the number of matrix types, possibly with !> a second line to specify certain matrix types. !> If the number of matrix types = 0, no testing of randomly !> generated examples is done, but any precomputed examples !> are tested. !> !> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is !> its dimension. The first line contains the dimension N and !> ISRT (two integers). ISRT indicates whether the last N lines !> are sorted by increasing real part of the eigenvalue !> (ISRT=0) or by increasing imaginary part (ISRT=1). The next !> N**2 lines contain the matrix rowwise, one entry per line. !> The last N lines correspond to each eigenvalue. Each of !> these last N lines contains 4 real values: the real part of !> the eigenvalues, the imaginary part of the eigenvalue, the !> reciprocal condition number of the eigenvalues, and the !> reciprocal condition number of the vector eigenvector. The !> end of data is indicated by dimension N=0. Even if no data !> is to be tested, there must be at least one line containing !> N=0. !> !>----------------------------------------------------------------------- !> !> The CSX data is like CVX. The first part is identical to CEV, and the !> second part consists of test matrices with precomputed solutions. !> !> line 1: 'CSX' in columns 1-3. !> !> line 2: NSIZES, INTEGER !> If NSIZES = 0, no testing of randomly generated examples !> is done, but any precomputed examples are tested. !> !> line 3: NN, INTEGER array, dimension(NSIZES) !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> !> line 5: THRESH, REAL !> !> line 6: NEWSD, INTEGER !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> !> lines 8 and following: The first line contains 'CSX' in columns 1-3 !> followed by the number of matrix types, possibly with !> a second line to specify certain matrix types. !> If the number of matrix types = 0, no testing of randomly !> generated examples is done, but any precomputed examples !> are tested. !> !> remaining lines : Each matrix is stored on 3+N**2 lines, where N is !> its dimension. The first line contains the dimension N, the !> dimension M of an invariant subspace, and ISRT. The second !> line contains M integers, identifying the eigenvalues in the !> invariant subspace (by their position in a list of !> eigenvalues ordered by increasing real part (if ISRT=0) or !> by increasing imaginary part (if ISRT=1)). The next N**2 !> lines contain the matrix rowwise. The last line contains the !> reciprocal condition number for the average of the selected !> eigenvalues, and the reciprocal condition number for the !> corresponding right invariant subspace. The end of data in !> indicated by a line containing N=0, M=0, and ISRT = 0. Even !> if no data is to be tested, there must be at least one line !> containing N=0, M=0 and ISRT=0. !> !>----------------------------------------------------------------------- !> !> CGG input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NPARMS, INTEGER !> Number of values of the parameters NB, NBMIN, NBCOL, NS, and !> MAXB. !> !> line 5: NBVAL, INTEGER array, dimension (NPARMS) !> The values for the blocksize NB. !> !> line 6: NBMIN, INTEGER array, dimension (NPARMS) !> The values for NBMIN, the minimum row dimension for blocks. !> !> line 7: NSVAL, INTEGER array, dimension (NPARMS) !> The values for the number of shifts. !> !> line 8: MXBVAL, INTEGER array, dimension (NPARMS) !> The values for MAXB, used in determining minimum blocksize. !> !> line 9: IACC22, INTEGER array, dimension (NPARMS) !> select structured matrix multiply: 1 or 2) !> !> line 10: NBCOL, INTEGER array, dimension (NPARMS) !> The values for NBCOL, the minimum column dimension for !> blocks. !> !> line 11: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 12: TSTCHK, LOGICAL !> Flag indicating whether or not to test the LAPACK routines. !> !> line 13: TSTDRV, LOGICAL !> Flag indicating whether or not to test the driver routines. !> !> line 14: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 15: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 15 was 2: !> !> line 16: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 17-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'CGG' for the generalized !> eigenvalue problem routines and driver routines. !> !>----------------------------------------------------------------------- !> !> CGS and CGV input files: !> !> line 1: 'CGS' or 'CGV' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension(NN) !> Dimensions of matrices to be tested. !> !> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHGEQR !> NBCOL : minimum column dimension for blocking !> !> line 5: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> If it is 0., all test case data will be printed. !> !> line 6: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits. !> !> line 7: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 17 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 7-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'CGS' for the generalized !> eigenvalue problem routines and driver routines. !> !>----------------------------------------------------------------------- !> !> CGX input file: !> line 1: 'CGX' in columns 1 to 3. !> !> line 2: N, INTEGER !> Value of N. !> !> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHGEQR !> NBCOL : minimum column dimension for blocking !> !> line 4: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> Information will be printed about each test for which the !> test ratio is greater than or equal to the threshold. !> !> line 5: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 6: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> If line 2 was 0: !> !> line 7-EOF: Precomputed examples are tested. !> !> remaining lines : Each example is stored on 3+2*N*N lines, where N is !> its dimension. The first line contains the dimension (a !> single integer). The next line contains an integer k such !> that only the last k eigenvalues will be selected and appear !> in the leading diagonal blocks of $A$ and $B$. The next N*N !> lines contain the matrix A, one element per line. The next N*N !> lines contain the matrix B. The last line contains the !> reciprocal of the eigenvalue cluster condition number and the !> reciprocal of the deflating subspace (associated with the !> selected eigencluster) condition number. The end of data is !> indicated by dimension N=0. Even if no data is to be tested, !> there must be at least one line containing N=0. !> !>----------------------------------------------------------------------- !> !> CXV input files: !> line 1: 'CXV' in columns 1 to 3. !> !> line 2: N, INTEGER !> Value of N. !> !> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs !> These integer parameters determine how blocking is done !> (see ILAENV for details) !> NB : block size !> NBMIN : minimum block size !> NX : minimum dimension for blocking !> NS : number of shifts in xHGEQR !> NBCOL : minimum column dimension for blocking !> !> line 4: THRESH, REAL !> The test threshold against which computed residuals are !> compared. Should generally be in the range from 10. to 20. !> Information will be printed about each test for which the !> test ratio is greater than or equal to the threshold. !> !> line 5: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 6: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 6 was 2: !> !> line 7: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> If line 2 was 0: !> !> line 7-EOF: Precomputed examples are tested. !> !> remaining lines : Each example is stored on 3+2*N*N lines, where N is !> its dimension. The first line contains the dimension (a !> single integer). The next N*N lines contain the matrix A, one !> element per line. The next N*N lines contain the matrix B. !> The next line contains the reciprocals of the eigenvalue !> condition numbers. The last line contains the reciprocals of !> the eigenvector condition numbers. The end of data is !> indicated by dimension N=0. Even if no data is to be tested, !> there must be at least one line containing N=0. !> !>----------------------------------------------------------------------- !> !> CHB input file: !> !> line 2: NN, INTEGER !> Number of values of N. !> !> line 3: NVAL, INTEGER array, dimension (NN) !> The values for the matrix dimension N. !> !> line 4: NK, INTEGER !> Number of values of K. !> !> line 5: KVAL, INTEGER array, dimension (NK) !> The values for the matrix dimension K. !> !> line 6: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 7 was 2: !> !> line 8: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 8-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'CHB'. !> !>----------------------------------------------------------------------- !> !> CBB input file: !> !> line 2: NN, INTEGER !> Number of values of M and N. !> !> line 3: MVAL, INTEGER array, dimension (NN) !> The values for the matrix row dimension M. !> !> line 4: NVAL, INTEGER array, dimension (NN) !> The values for the matrix column dimension N. !> !> line 4: NK, INTEGER !> Number of values of K. !> !> line 5: KVAL, INTEGER array, dimension (NK) !> The values for the matrix bandwidth K. !> !> line 6: NPARMS, INTEGER !> Number of values of the parameter NRHS !> !> line 7: NSVAL, INTEGER array, dimension (NPARMS) !> The values for the number of right hand sides NRHS. !> !> line 8: THRESH !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 9: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 9 was 2: !> !> line 10: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 10-EOF: Lines specifying matrix types, as for SVD. !> The 3-character path name is 'CBB'. !> !>----------------------------------------------------------------------- !> !> CEC input file: !> !> line 2: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> lines 3-EOF: !> !> Input for testing the eigencondition routines consists of a set of !> specially constructed test cases and their solutions. The data !> format is not intended to be modified by the user. !> !>----------------------------------------------------------------------- !> !> CBL and CBK input files: !> !> line 1: 'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in !> columns 1-3 to test CGEBAK. !> !> The remaining lines consist of specially constructed test cases. !> !>----------------------------------------------------------------------- !> !> CGL and CGK input files: !> !> line 1: 'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in !> columns 1-3 to test CGGBAK. !> !> The remaining lines consist of specially constructed test cases. !> !>----------------------------------------------------------------------- !> !> GLM data file: !> !> line 1: 'GLM' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M (row dimension). !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P (row dimension). !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N (column dimension), note M <= N <= M+P. !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GLM' for the generalized !> linear regression model routines. !> !>----------------------------------------------------------------------- !> !> GQR data file: !> !> line 1: 'GQR' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M. !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P. !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N. !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GQR' for the generalized !> QR and RQ routines. !> !>----------------------------------------------------------------------- !> !> GSV data file: !> !> line 1: 'GSV' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M (row dimension). !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P (row dimension). !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N (column dimension). !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GSV' for the generalized !> SVD routines. !> !>----------------------------------------------------------------------- !> !> CSD data file: !> !> line 1: 'CSD' in columns 1 to 3. !> !> line 2: NM, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NM) !> Values of M (row and column dimension of orthogonal matrix). !> !> line 4: PVAL, INTEGER array, dimension(NM) !> Values of P (row dimension of top-left block). !> !> line 5: NVAL, INTEGER array, dimension(NM) !> Values of N (column dimension of top-left block). !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'CSD' for the CSD routine. !> !>----------------------------------------------------------------------- !> !> LSE data file: !> !> line 1: 'LSE' in columns 1 to 3. !> !> line 2: NN, INTEGER !> Number of values of M, P, and N. !> !> line 3: MVAL, INTEGER array, dimension(NN) !> Values of M. !> !> line 4: PVAL, INTEGER array, dimension(NN) !> Values of P. !> !> line 5: NVAL, INTEGER array, dimension(NN) !> Values of N, note P <= N <= P+M. !> !> line 6: THRESH, REAL !> Threshold value for the test ratios. Information will be !> printed about each test for which the test ratio is greater !> than or equal to the threshold. !> !> line 7: TSTERR, LOGICAL !> Flag indicating whether or not to test the error exits for !> the LAPACK routines and driver routines. !> !> line 8: NEWSD, INTEGER !> A code indicating how to set the random number seed. !> = 0: Set the seed to a default value before each run !> = 1: Initialize the seed to a default value only before the !> first run !> = 2: Like 1, but use the seed values on the next line !> !> If line 8 was 2: !> !> line 9: INTEGER array, dimension (4) !> Four integer values for the random number seed. !> !> lines 9-EOF: Lines specifying matrix types, as for NEP. !> The 3-character path name is 'GSV' for the generalized !> SVD routines. !> !>----------------------------------------------------------------------- !> !> NMAX is currently set to 132 and must be at least 12 for some of the !> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter !> statements below. For SVD, we assume NRHS may be as big as N. The !> parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG. !>
| subroutine cchkgg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| logical | tstdif, | ||
| real | thrshn, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( lda, * ) | t, | ||
| complex, dimension( lda, * ) | s1, | ||
| complex, dimension( lda, * ) | s2, | ||
| complex, dimension( lda, * ) | p1, | ||
| complex, dimension( lda, * ) | p2, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldu, * ) | v, | ||
| complex, dimension( ldu, * ) | q, | ||
| complex, dimension( ldu, * ) | z, | ||
| complex, dimension( * ) | alpha1, | ||
| complex, dimension( * ) | beta1, | ||
| complex, dimension( * ) | alpha3, | ||
| complex, dimension( * ) | beta3, | ||
| complex, dimension( ldu, * ) | evectl, | ||
| complex, dimension( ldu, * ) | evectr, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| logical, dimension( * ) | llwork, | ||
| real, dimension( 15 ) | result, | ||
| integer | info ) |
CCHKGG
!> !> CCHKGG checks the nonsymmetric generalized eigenvalue problem !> routines. !> H H H !> CGGHRD factors A and B as U H V and U T V , where means conjugate !> transpose, H is hessenberg, T is triangular and U and V are unitary. !> !> H H !> CHGEQZ factors H and T as Q S Z and Q P Z , where P and S are upper !> triangular and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where !> alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j) !> is a root of the generalized eigenvalue problem !> !> det( A - w(j) B ) = 0 !> !> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent !> problem !> !> det( m(j) A - B ) = 0 !> !> CTGEVC computes the matrix L of left eigenvectors and the matrix R !> of right eigenvectors for the matrix pair ( S, P ). In the !> description below, l and r are left and right eigenvectors !> corresponding to the generalized eigenvalues (alpha,beta). !> !> When CCHKGG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 13 !> tests will be performed. The first twelve should be !> small -- O(1). They will be compared with the threshold THRESH: !> !> H !> (1) | A - U H V | / ( |A| n ulp ) !> !> H !> (2) | B - U T V | / ( |B| n ulp ) !> !> H !> (3) | I - UU | / ( n ulp ) !> !> H !> (4) | I - VV | / ( n ulp ) !> !> H !> (5) | H - Q S Z | / ( |H| n ulp ) !> !> H !> (6) | T - Q P Z | / ( |T| n ulp ) !> !> H !> (7) | I - QQ | / ( n ulp ) !> !> H !> (8) | I - ZZ | / ( n ulp ) !> !> (9) max over all left eigenvalue/-vector pairs (beta/alpha,l) of !> H !> | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) ) !> !> (10) max over all left eigenvalue/-vector pairs (beta/alpha,l') of !> H !> | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) ) !> !> where the eigenvectors l' are the result of passing Q to !> STGEVC and back transforming (JOB='B'). !> !> (11) max over all right eigenvalue/-vector pairs (beta/alpha,r) of !> !> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) ) !> !> (12) max over all right eigenvalue/-vector pairs (beta/alpha,r') of !> !> | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) ) !> !> where the eigenvectors r' are the result of passing Z to !> STGEVC and back transforming (JOB='B'). !> !> The last three test ratios will usually be small, but there is no !> mathematical requirement that they be so. They are therefore !> compared with THRESH only if TSTDIF is .TRUE. !> !> (13) | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp ) !> !> (14) | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp ) !> !> (15) max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| , !> |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp !> !> In addition, the normalization of L and R are checked, and compared !> with the threshold THRSHN. !> !> Test Matrices !> ---- -------- !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is P*D1, P is a random unitary diagonal !> matrix (i.e., with random magnitude 1 entries !> on the diagonal), and D1=diag( 0, 1,..., N-1 ) !> (i.e., a diagonal matrix with D1(1,1)=0, !> D1(2,2)=1, ..., D1(N,N)=N-1.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and !> D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and !> P and Q are random unitary diagonal matrices. !> t t !> (16) U ( J , J ) V where U and V are random unitary matrices. !> !> (17) U ( T1, T2 ) V where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> Q*( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) U ( T1, T2 ) V diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) U ( T1, T2 ) V diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) U ( big*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) U ( small*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) U ( big*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) U ( T1, T2 ) V where T1 and T2 are random upper-triangular !> matrices. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CCHKGG does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKGG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKGG to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | TSTDIF | !> TSTDIF is LOGICAL !> Specifies whether test ratios 13-15 will be computed and !> compared with THRESH. !> = .FALSE.: Only test ratios 1-12 will be computed and tested. !> Ratios 13-15 will be set to zero. !> = .TRUE.: All the test ratios 1-15 will be computed and !> tested. !> |
| [in] | THRSHN | !> THRSHN is REAL !> Threshold for reporting eigenvector normalization error. !> If the normalization of any eigenvector differs from 1 by !> more than THRSHN*ulp, then a special error message will be !> printed. (This is handled separately from the other tests, !> since only a compiler or programming error should cause an !> error message, at least if THRSHN is at least 5--10.) !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension (LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, H, T, S1, P1, S2, and P2. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX array, dimension (LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA, max(NN)) !> The upper Hessenberg matrix computed from A by CGGHRD. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by CGGHRD. !> |
| [out] | S1 | !> S1 is COMPLEX array, dimension (LDA, max(NN)) !> The Schur (upper triangular) matrix computed from H by CHGEQZ !> when Q and Z are also computed. !> |
| [out] | S2 | !> S2 is COMPLEX array, dimension (LDA, max(NN)) !> The Schur (upper triangular) matrix computed from H by CHGEQZ !> when Q and Z are not computed. !> |
| [out] | P1 | !> P1 is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from T by CHGEQZ !> when Q and Z are also computed. !> |
| [out] | P2 | !> P2 is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from T by CHGEQZ !> when Q and Z are not computed. !> |
| [out] | U | !> U is COMPLEX array, dimension (LDU, max(NN)) !> The (left) unitary matrix computed by CGGHRD. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U, V, Q, Z, EVECTL, and EVECTR. It !> must be at least 1 and at least max( NN ). !> |
| [out] | V | !> V is COMPLEX array, dimension (LDU, max(NN)) !> The (right) unitary matrix computed by CGGHRD. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDU, max(NN)) !> The (left) unitary matrix computed by CHGEQZ. !> |
| [out] | Z | !> Z is COMPLEX array, dimension (LDU, max(NN)) !> The (left) unitary matrix computed by CHGEQZ. !> |
| [out] | ALPHA1 | !> ALPHA1 is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA1 | !> BETA1 is COMPLEX array, dimension (max(NN)) !> The generalized eigenvalues of (A,B) computed by CHGEQZ !> when Q, Z, and the full Schur matrices are computed. !> |
| [out] | ALPHA3 | !> ALPHA3 is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA3 | !> BETA3 is COMPLEX array, dimension (max(NN)) !> The generalized eigenvalues of (A,B) computed by CHGEQZ !> when neither Q, Z, nor the Schur matrices are computed. !> |
| [out] | EVECTL | !> EVECTL is COMPLEX array, dimension (LDU, max(NN)) !> The (lower triangular) left eigenvector matrix for the !> matrices in S1 and P1. !> |
| [out] | EVECTR | !> EVECTR is COMPLEX array, dimension (LDU, max(NN)) !> The (upper triangular) right eigenvector matrix for the !> matrices in S1 and P1. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( 4*N, 2 * N**2, 1 ), for all N=NN(j). !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (2*max(NN)) !> |
| [out] | LLWORK | !> LLWORK is LOGICAL array, dimension (max(NN)) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 498 of file cchkgg.f.
| subroutine cchkgk | ( | integer | nin, |
| integer | nout ) |
CCHKGK
!> !> CCHKGK tests CGGBAK, a routine for backward balancing of !> a matrix pair (A, B). !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 53 of file cchkgk.f.
| subroutine cchkgl | ( | integer | nin, |
| integer | nout ) |
CCHKGL
!> !> CCHKGL tests CGGBAL, a routine for balancing a matrix pair (A, B). !>
| [in] | NIN | !> NIN is INTEGER !> The logical unit number for input. NIN > 0. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The logical unit number for output. NOUT > 0. !> |
Definition at line 52 of file cchkgl.f.
| subroutine cchkhb | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | nwdths, | ||
| integer, dimension( * ) | kk, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | sd, | ||
| real, dimension( * ) | se, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CCHKHB
!> !> CCHKHB tests the reduction of a Hermitian band matrix to tridiagonal !> from, used with the Hermitian eigenvalue problem. !> !> CHBTRD factors a Hermitian band matrix A as U S U* , where * means !> conjugate transpose, S is symmetric tridiagonal, and U is unitary. !> CHBTRD can use either just the lower or just the upper triangle !> of A; CCHKHB checks both cases. !> !> When CCHKHB is called, a number of matrix (), a number !> of bandwidths (), and a number of matrix are !> specified. For each size (), each bandwidth () less than or !> equal to , and each type of matrix, one matrix will be generated !> and used to test the hermitian banded reduction routine. For each !> matrix, a number of tests will be performed: !> !> (1) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with !> UPLO='U' !> !> (2) | I - UU* | / ( n ulp ) !> !> (3) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with !> UPLO='L' !> !> (4) | I - UU* | / ( n ulp ) !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CCHKHB does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NWDTHS | !> NWDTHS is INTEGER !> The number of bandwidths to use. If it is zero, !> CCHKHB does nothing. It must be at least zero. !> |
| [in] | KK | !> KK is INTEGER array, dimension (NWDTHS) !> An array containing the bandwidths to be used for the band !> matrices. The values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKHB !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKHB to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension !> (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 2 (not 1!) !> and at least max( KK )+1. !> |
| [out] | SD | !> SD is REAL array, dimension (max(NN)) !> Used to hold the diagonal of the tridiagonal matrix computed !> by CHBTRD. !> |
| [out] | SE | !> SE is REAL array, dimension (max(NN)) !> Used to hold the off-diagonal of the tridiagonal matrix !> computed by CHBTRD. !> |
| [out] | U | !> U is COMPLEX array, dimension (LDU, max(NN)) !> Used to hold the unitary matrix computed by CHBTRD. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. It must be at least 1 !> and at least max( NN ). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( LDA+1, max(NN)+1 )*max(NN). !> |
| [out] | RWORK | !> RWORK is REAL array !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (4) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 295 of file cchkhb.f.
| subroutine cchkhb2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | nwdths, | ||
| integer, dimension( * ) | kk, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | sd, | ||
| real, dimension( * ) | se, | ||
| real, dimension( * ) | d1, | ||
| real, dimension( * ) | d2, | ||
| real, dimension( * ) | d3, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CCHKHB2STG
!> !> CCHKHB2STG tests the reduction of a Hermitian band matrix to tridiagonal !> from, used with the Hermitian eigenvalue problem. !> !> CHBTRD factors a Hermitian band matrix A as U S U* , where * means !> conjugate transpose, S is symmetric tridiagonal, and U is unitary. !> CHBTRD can use either just the lower or just the upper triangle !> of A; CCHKHB2STG checks both cases. !> !> CHETRD_HB2ST factors a Hermitian band matrix A as U S U* , !> where * means conjugate transpose, S is symmetric tridiagonal, and U is !> unitary. CHETRD_HB2ST can use either just the lower or just !> the upper triangle of A; CCHKHB2STG checks both cases. !> !> DSTEQR factors S as Z D1 Z'. !> D1 is the matrix of eigenvalues computed when Z is not computed !> and from the S resulting of DSBTRD (used as reference for DSYTRD_SB2ST) !> D2 is the matrix of eigenvalues computed when Z is not computed !> and from the S resulting of DSYTRD_SB2ST . !> D3 is the matrix of eigenvalues computed when Z is not computed !> and from the S resulting of DSYTRD_SB2ST . !> !> When CCHKHB2STG is called, a number of matrix (), a number !> of bandwidths (), and a number of matrix are !> specified. For each size (), each bandwidth () less than or !> equal to , and each type of matrix, one matrix will be generated !> and used to test the hermitian banded reduction routine. For each !> matrix, a number of tests will be performed: !> !> (1) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with !> UPLO='U' !> !> (2) | I - UU* | / ( n ulp ) !> !> (3) | A - V S V* | / ( |A| n ulp ) computed by CHBTRD with !> UPLO='L' !> !> (4) | I - UU* | / ( n ulp ) !> !> (5) | D1 - D2 | / ( |D1| ulp ) where D1 is computed by !> DSBTRD with UPLO='U' and !> D2 is computed by !> CHETRD_HB2ST with UPLO='U' !> !> (6) | D1 - D3 | / ( |D1| ulp ) where D1 is computed by !> DSBTRD with UPLO='U' and !> D3 is computed by !> CHETRD_HB2ST with UPLO='L' !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CCHKHB2STG does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NWDTHS | !> NWDTHS is INTEGER !> The number of bandwidths to use. If it is zero, !> CCHKHB2STG does nothing. It must be at least zero. !> |
| [in] | KK | !> KK is INTEGER array, dimension (NWDTHS) !> An array containing the bandwidths to be used for the band !> matrices. The values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKHB2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKHB2STG to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension !> (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 2 (not 1!) !> and at least max( KK )+1. !> |
| [out] | SD | !> SD is REAL array, dimension (max(NN)) !> Used to hold the diagonal of the tridiagonal matrix computed !> by CHBTRD. !> |
| [out] | SE | !> SE is REAL array, dimension (max(NN)) !> Used to hold the off-diagonal of the tridiagonal matrix !> computed by CHBTRD. !> |
| [out] | D1 | !> D1 is REAL array, dimension (max(NN)) !> Used store eigenvalues resulting from the tridiagonal !> form using the DSBTRD. !> |
| [out] | D2 | !> D2 is REAL array, dimension (max(NN)) !> |
| [out] | D3 | !> D3 is REAL array, dimension (max(NN)) !> |
| [out] | U | !> U is COMPLEX array, dimension (LDU, max(NN)) !> Used to hold the unitary matrix computed by CHBTRD. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. It must be at least 1 !> and at least max( NN ). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max( LDA+1, max(NN)+1 )*max(NN). !> |
| [out] | RWORK | !> RWORK is REAL array !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (4) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 337 of file cchkhb2stg.f.
| subroutine cchkhs | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( lda, * ) | t1, | ||
| complex, dimension( lda, * ) | t2, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldu, * ) | z, | ||
| complex, dimension( ldu, * ) | uz, | ||
| complex, dimension( * ) | w1, | ||
| complex, dimension( * ) | w3, | ||
| complex, dimension( ldu, * ) | evectl, | ||
| complex, dimension( ldu, * ) | evectr, | ||
| complex, dimension( ldu, * ) | evecty, | ||
| complex, dimension( ldu, * ) | evectx, | ||
| complex, dimension( ldu, * ) | uu, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( * ) | work, | ||
| integer | nwork, | ||
| real, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| logical, dimension( * ) | select, | ||
| real, dimension( 14 ) | result, | ||
| integer | info ) |
CCHKHS
!> !> CCHKHS checks the nonsymmetric eigenvalue problem routines. !> !> CGEHRD factors A as U H U' , where ' means conjugate !> transpose, H is hessenberg, and U is unitary. !> !> CUNGHR generates the unitary matrix U. !> !> CUNMHR multiplies a matrix by the unitary matrix U. !> !> CHSEQR factors H as Z T Z' , where Z is unitary and T !> is upper triangular. It also computes the eigenvalues, !> w(1), ..., w(n); we define a diagonal matrix W whose !> (diagonal) entries are the eigenvalues. !> !> CTREVC computes the left eigenvector matrix L and the !> right eigenvector matrix R for the matrix T. The !> columns of L are the complex conjugates of the left !> eigenvectors of T. The columns of R are the right !> eigenvectors of T. L is lower triangular, and R is !> upper triangular. !> !> CHSEIN computes the left eigenvector matrix Y and the !> right eigenvector matrix X for the matrix H. The !> columns of Y are the complex conjugates of the left !> eigenvectors of H. The columns of X are the right !> eigenvectors of H. Y is lower triangular, and X is !> upper triangular. !> !> When CCHKHS is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 14 !> tests will be performed: !> !> (1) | A - U H U**H | / ( |A| n ulp ) !> !> (2) | I - UU**H | / ( n ulp ) !> !> (3) | H - Z T Z**H | / ( |H| n ulp ) !> !> (4) | I - ZZ**H | / ( n ulp ) !> !> (5) | A - UZ H (UZ)**H | / ( |A| n ulp ) !> !> (6) | I - UZ (UZ)**H | / ( n ulp ) !> !> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) !> !> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) !> !> (9) | TR - RW | / ( |T| |R| ulp ) !> !> (10) | L**H T - W**H L | / ( |T| |L| ulp ) !> !> (11) | HX - XW | / ( |H| |X| ulp ) !> !> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) !> !> (13) | AX - XW | / ( |A| |X| ulp ) !> !> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by SQRT( overflow threshold ) !> (8) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> (20) Same as (19), but multiplied by SQRT( overflow threshold ) !> (21) Same as (19), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES - INTEGER !> The number of sizes of matrices to use. If it is zero, !> CCHKHS does nothing. It must be at least zero. !> Not modified. !> !> NN - INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES - INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKHS !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE - LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED - INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKHS to continue the same random number !> sequence. !> Modified. !> !> THRESH - REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT - INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A - COMPLEX array, dimension (LDA,max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA - INTEGER !> The leading dimension of A, H, T1 and T2. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> H - COMPLEX array, dimension (LDA,max(NN)) !> The upper hessenberg matrix computed by CGEHRD. On exit, !> H contains the Hessenberg form of the matrix in A. !> Modified. !> !> T1 - COMPLEX array, dimension (LDA,max(NN)) !> The Schur (=) matrix computed by CHSEQR !> if Z is computed. On exit, T1 contains the Schur form of !> the matrix in A. !> Modified. !> !> T2 - COMPLEX array, dimension (LDA,max(NN)) !> The Schur matrix computed by CHSEQR when Z is not computed. !> This should be identical to T1. !> Modified. !> !> LDU - INTEGER !> The leading dimension of U, Z, UZ and UU. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> U - COMPLEX array, dimension (LDU,max(NN)) !> The unitary matrix computed by CGEHRD. !> Modified. !> !> Z - COMPLEX array, dimension (LDU,max(NN)) !> The unitary matrix computed by CHSEQR. !> Modified. !> !> UZ - COMPLEX array, dimension (LDU,max(NN)) !> The product of U times Z. !> Modified. !> !> W1 - COMPLEX array, dimension (max(NN)) !> The eigenvalues of A, as computed by a full Schur !> decomposition H = Z T Z'. On exit, W1 contains the !> eigenvalues of the matrix in A. !> Modified. !> !> W3 - COMPLEX array, dimension (max(NN)) !> The eigenvalues of A, as computed by a partial Schur !> decomposition (Z not computed, T only computed as much !> as is necessary for determining eigenvalues). On exit, !> W3 contains the eigenvalues of the matrix in A, possibly !> perturbed by CHSEIN. !> Modified. !> !> EVECTL - COMPLEX array, dimension (LDU,max(NN)) !> The conjugate transpose of the (upper triangular) left !> eigenvector matrix for the matrix in T1. !> Modified. !> !> EVECTR - COMPLEX array, dimension (LDU,max(NN)) !> The (upper triangular) right eigenvector matrix for the !> matrix in T1. !> Modified. !> !> EVECTY - COMPLEX array, dimension (LDU,max(NN)) !> The conjugate transpose of the left eigenvector matrix !> for the matrix in H. !> Modified. !> !> EVECTX - COMPLEX array, dimension (LDU,max(NN)) !> The right eigenvector matrix for the matrix in H. !> Modified. !> !> UU - COMPLEX array, dimension (LDU,max(NN)) !> Details of the unitary matrix computed by CGEHRD. !> Modified. !> !> TAU - COMPLEX array, dimension (max(NN)) !> Further details of the unitary matrix computed by CGEHRD. !> Modified. !> !> WORK - COMPLEX array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK - INTEGER !> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. !> !> RWORK - REAL array, dimension (max(NN)) !> Workspace. Could be equivalenced to IWORK, but not SELECT. !> Modified. !> !> IWORK - INTEGER array, dimension (max(NN)) !> Workspace. !> Modified. !> !> SELECT - LOGICAL array, dimension (max(NN)) !> Workspace. Could be equivalenced to IWORK, but not RWORK. !> Modified. !> !> RESULT - REAL array, dimension (14) !> The values computed by the fourteen tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO - INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -14: LDU < 1 or LDU < NMAX. !> -26: NWORK too small. !> If CLATMR, CLATMS, or CLATME returns an error code, the !> absolute value of it is returned. !> If 1, then CHSEQR could not find all the shifts. !> If 2, then the EISPACK code (for small blocks) failed. !> If >2, then 30*N iterations were not enough to find an !> eigenvalue or to decompose the problem. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> MTEST The number of tests defined: care must be taken !> that (1) the size of RESULT, (2) the number of !> tests actually performed, and (3) MTEST agree. !> NTEST The number of tests performed on this matrix !> so far. This should be less than MTEST, and !> equal to it by the last test. It will be less !> if any of the routines being tested indicates !> that it could not compute the matrices that !> would be tested. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by SLAFTS). !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL, !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selects whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !>
Definition at line 407 of file cchkhs.f.
| subroutine cchkst | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( * ) | ap, | ||
| real, dimension( * ) | sd, | ||
| real, dimension( * ) | se, | ||
| real, dimension( * ) | d1, | ||
| real, dimension( * ) | d2, | ||
| real, dimension( * ) | d3, | ||
| real, dimension( * ) | d4, | ||
| real, dimension( * ) | d5, | ||
| real, dimension( * ) | wa1, | ||
| real, dimension( * ) | wa2, | ||
| real, dimension( * ) | wa3, | ||
| real, dimension( * ) | wr, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldu, * ) | v, | ||
| complex, dimension( * ) | vp, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( ldu, * ) | z, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CCHKST
!>
!> CCHKST checks the Hermitian eigenvalue problem routines.
!>
!> CHETRD factors A as U S U* , where * means conjugate transpose,
!> S is real symmetric tridiagonal, and U is unitary.
!> CHETRD can use either just the lower or just the upper triangle
!> of A; CCHKST checks both cases.
!> U is represented as a product of Householder
!> transformations, whose vectors are stored in the first
!> n-1 columns of V, and whose scale factors are in TAU.
!>
!> CHPTRD does the same as CHETRD, except that A and V are stored
!> in format.
!>
!> CUNGTR constructs the matrix U from the contents of V and TAU.
!>
!> CUPGTR constructs the matrix U from the contents of VP and TAU.
!>
!> CSTEQR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal. D2 is the matrix of
!> eigenvalues computed when Z is not computed.
!>
!> SSTERF computes D3, the matrix of eigenvalues, by the
!> PWK method, which does not yield eigenvectors.
!>
!> CPTEQR factors S as Z4 D4 Z4* , for a
!> Hermitian positive definite tridiagonal matrix.
!> D5 is the matrix of eigenvalues computed when Z is not
!> computed.
!>
!> SSTEBZ computes selected eigenvalues. WA1, WA2, and
!> WA3 will denote eigenvalues computed to high
!> absolute accuracy, with different range options.
!> WR will denote eigenvalues computed to high relative
!> accuracy.
!>
!> CSTEIN computes Y, the eigenvectors of S, given the
!> eigenvalues.
!>
!> CSTEDC factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). It may also
!> update an input unitary matrix, usually the output
!> from CHETRD/CUNGTR or CHPTRD/CUPGTR ('V' option). It may
!> also just compute eigenvalues ('N' option).
!>
!> CSTEMR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). CSTEMR
!> uses the Relatively Robust Representation whenever possible.
!>
!> When CCHKST is called, a number of matrix () and a
!> number of matrix are specified. For each size ()
!> and each type of matrix, one matrix will be generated and used
!> to test the Hermitian eigenroutines. For each matrix, a number
!> of tests will be performed:
!>
!> (1) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='U', ... )
!>
!> (2) | I - UV* | / ( n ulp ) CUNGTR( UPLO='U', ... )
!>
!> (3) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='L', ... )
!>
!> (4) | I - UV* | / ( n ulp ) CUNGTR( UPLO='L', ... )
!>
!> (5-8) Same as 1-4, but for CHPTRD and CUPGTR.
!>
!> (9) | S - Z D Z* | / ( |S| n ulp ) CSTEQR('V',...)
!>
!> (10) | I - ZZ* | / ( n ulp ) CSTEQR('V',...)
!>
!> (11) | D1 - D2 | / ( |D1| ulp ) CSTEQR('N',...)
!>
!> (12) | D1 - D3 | / ( |D1| ulp ) SSTERF
!>
!> (13) 0 if the true eigenvalues (computed by sturm count)
!> of S are within THRESH of
!> those in D1. 2*THRESH if they are not. (Tested using
!> SSTECH)
!>
!> For S positive definite,
!>
!> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) CPTEQR('V',...)
!>
!> (15) | I - Z4 Z4* | / ( n ulp ) CPTEQR('V',...)
!>
!> (16) | D4 - D5 | / ( 100 |D4| ulp ) CPTEQR('N',...)
!>
!> When S is also diagonally dominant by the factor gamma < 1,
!>
!> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> SSTEBZ( 'A', 'E', ...)
!>
!> (18) | WA1 - D3 | / ( |D3| ulp ) SSTEBZ( 'A', 'E', ...)
!>
!> (19) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> SSTEBZ( 'I', 'E', ...)
!>
!> (20) | S - Y WA1 Y* | / ( |S| n ulp ) SSTEBZ, CSTEIN
!>
!> (21) | I - Y Y* | / ( n ulp ) SSTEBZ, CSTEIN
!>
!> (22) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('I')
!>
!> (23) | I - ZZ* | / ( n ulp ) CSTEDC('I')
!>
!> (24) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('V')
!>
!> (25) | I - ZZ* | / ( n ulp ) CSTEDC('V')
!>
!> (26) | D1 - D2 | / ( |D1| ulp ) CSTEDC('V') and
!> CSTEDC('N')
!>
!> Test 27 is disabled at the moment because CSTEMR does not
!> guarantee high relatvie accuracy.
!>
!> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> CSTEMR('V', 'A')
!>
!> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> CSTEMR('V', 'I')
!>
!> Tests 29 through 34 are disable at present because CSTEMR
!> does not handle partial spectrum requests.
!>
!> (29) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'I')
!>
!> (30) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'I')
!>
!> (31) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> CSTEMR('N', 'I') vs. CSTEMR('V', 'I')
!>
!> (32) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'V')
!>
!> (33) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'V')
!>
!> (34) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> CSTEMR('N', 'V') vs. CSTEMR('V', 'V')
!>
!> (35) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'A')
!>
!> (36) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'A')
!>
!> (37) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> CSTEMR('N', 'A') vs. CSTEMR('V', 'A')
!>
!> The are specified by an array NN(1:NSIZES); the value of
!> each element NN(j) specifies one size.
!> The are specified by a logical array DOTYPE( 1:NTYPES );
!> if DOTYPE(j) is .TRUE., then matrix type will be generated.
!> Currently, the list of possible types is:
!>
!> (1) The zero matrix.
!> (2) The identity matrix.
!>
!> (3) A diagonal matrix with evenly spaced entries
!> 1, ..., ULP and random signs.
!> (ULP = (first number larger than 1) - 1 )
!> (4) A diagonal matrix with geometrically spaced entries
!> 1, ..., ULP and random signs.
!> (5) A diagonal matrix with entries 1, ULP, ..., ULP
!> and random signs.
!>
!> (6) Same as (4), but multiplied by SQRT( overflow threshold )
!> (7) Same as (4), but multiplied by SQRT( underflow threshold )
!>
!> (8) A matrix of the form U* D U, where U is unitary and
!> D has evenly spaced entries 1, ..., ULP with random signs
!> on the diagonal.
!>
!> (9) A matrix of the form U* D U, where U is unitary and
!> D has geometrically spaced entries 1, ..., ULP with random
!> signs on the diagonal.
!>
!> (10) A matrix of the form U* D U, where U is unitary and
!> D has entries 1, ULP,..., ULP with random
!> signs on the diagonal.
!>
!> (11) Same as (8), but multiplied by SQRT( overflow threshold )
!> (12) Same as (8), but multiplied by SQRT( underflow threshold )
!>
!> (13) Hermitian matrix with random entries chosen from (-1,1).
!> (14) Same as (13), but multiplied by SQRT( overflow threshold )
!> (15) Same as (13), but multiplied by SQRT( underflow threshold )
!> (16) Same as (8), but diagonal elements are all positive.
!> (17) Same as (9), but diagonal elements are all positive.
!> (18) Same as (10), but diagonal elements are all positive.
!> (19) Same as (16), but multiplied by SQRT( overflow threshold )
!> (20) Same as (16), but multiplied by SQRT( underflow threshold )
!> (21) A diagonally dominant tridiagonal matrix with geometrically
!> spaced diagonal entries 1, ..., ULP.
!> | [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CCHKST does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKST !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKST to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array of !> dimension ( LDA , max(NN) ) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> |
| [out] | AP | !> AP is COMPLEX array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix A stored in packed format. !> |
| [out] | SD | !> SD is REAL array of !> dimension( max(NN) ) !> The diagonal of the tridiagonal matrix computed by CHETRD. !> On exit, SD and SE contain the tridiagonal form of the !> matrix in A. !> |
| [out] | SE | !> SE is REAL array of !> dimension( max(NN) ) !> The off-diagonal of the tridiagonal matrix computed by !> CHETRD. On exit, SD and SE contain the tridiagonal form of !> the matrix in A. !> |
| [out] | D1 | !> D1 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> |
| [out] | D2 | !> D2 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> |
| [out] | D3 | !> D3 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by SSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> |
| [out] | D4 | !> D4 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CPTEQR(V). !> ZPTEQR factors S as Z4 D4 Z4* !> On exit, the eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | D5 | !> D5 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by ZPTEQR(N) !> when Z is not computed. On exit, the !> eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | WA1 | !> WA1 is REAL array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by SSTEBZ. !> |
| [out] | WA2 | !> WA2 is REAL array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by SSTEBZ. !> Choose random values for IL and IU, and ask for the !> IL-th through IU-th eigenvalues. !> |
| [out] | WA3 | !> WA3 is REAL array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by SSTEBZ. !> Determine the values VL and VU of the IL-th and IU-th !> eigenvalues and ask for all eigenvalues in this range. !> |
| [out] | WR | !> WR is DOUBLE PRECISION array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different options. !> as computed by DSTEBZ. !> |
| [out] | U | !> U is COMPLEX array of !> dimension( LDU, max(NN) ). !> The unitary matrix computed by CHETRD + CUNGTR. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U, Z, and V. It must be at least 1 !> and at least max( NN ). !> |
| [out] | V | !> V is COMPLEX array of !> dimension( LDU, max(NN) ). !> The Housholder vectors computed by CHETRD in reducing A to !> tridiagonal form. The vectors computed with UPLO='U' are !> in the upper triangle, and the vectors computed with UPLO='L' !> are in the lower triangle. (As described in CHETRD, the !> sub- and superdiagonal are not set to 1, although the !> true Householder vector has a 1 in that position. The !> routines that use V, such as CUNGTR, set those entries to !> 1 before using them, and then restore them later.) !> |
| [out] | VP | !> VP is COMPLEX array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix V stored in packed format. !> |
| [out] | TAU | !> TAU is COMPLEX array of !> dimension( max(NN) ) !> The Householder factors computed by CHETRD in reducing A !> to tridiagonal form. !> |
| [out] | Z | !> Z is COMPLEX array of !> dimension( LDU, max(NN) ). !> The unitary matrix of eigenvectors computed by CSTEQR, !> CPTEQR, and CSTEIN. !> |
| [out] | WORK | !> WORK is COMPLEX array of !> dimension( LWORK ) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2 !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | IWORK | !> IWORK is INTEGER array, !> Workspace. !> |
| [out] | LIWORK | !> LIWORK is INTEGER !> The number of entries in IWORK. This must be at least !> 6 + 6*Nmax + 5 * Nmax * lg Nmax !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | RWORK | !> RWORK is REAL array !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The number of entries in LRWORK (dimension( ??? ) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (26) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -23: LDU < 1 or LDU < NMAX. !> -29: LWORK too small. !> If CLATMR, CLATMS, CHETRD, CUNGTR, CSTEQR, SSTERF, !> or CUNMC2 returns an error code, the !> absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NBLOCK Blocksize as returned by ENVIR. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 599 of file cchkst.f.
| subroutine cchkst2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( * ) | ap, | ||
| real, dimension( * ) | sd, | ||
| real, dimension( * ) | se, | ||
| real, dimension( * ) | d1, | ||
| real, dimension( * ) | d2, | ||
| real, dimension( * ) | d3, | ||
| real, dimension( * ) | d4, | ||
| real, dimension( * ) | d5, | ||
| real, dimension( * ) | wa1, | ||
| real, dimension( * ) | wa2, | ||
| real, dimension( * ) | wa3, | ||
| real, dimension( * ) | wr, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldu, * ) | v, | ||
| complex, dimension( * ) | vp, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( ldu, * ) | z, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CCHKST2STG
!>
!> CCHKST2STG checks the Hermitian eigenvalue problem routines
!> using the 2-stage reduction techniques. Since the generation
!> of Q or the vectors is not available in this release, we only
!> compare the eigenvalue resulting when using the 2-stage to the
!> one considered as reference using the standard 1-stage reduction
!> CHETRD. For that, we call the standard CHETRD and compute D1 using
!> DSTEQR, then we call the 2-stage CHETRD_2STAGE with Upper and Lower
!> and we compute D2 and D3 using DSTEQR and then we replaced tests
!> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
!> the 1-stage results are OK and can be trusted.
!> This testing routine will converge to the CCHKST in the next
!> release when vectors and generation of Q will be implemented.
!>
!> CHETRD factors A as U S U* , where * means conjugate transpose,
!> S is real symmetric tridiagonal, and U is unitary.
!> CHETRD can use either just the lower or just the upper triangle
!> of A; CCHKST2STG checks both cases.
!> U is represented as a product of Householder
!> transformations, whose vectors are stored in the first
!> n-1 columns of V, and whose scale factors are in TAU.
!>
!> CHPTRD does the same as CHETRD, except that A and V are stored
!> in format.
!>
!> CUNGTR constructs the matrix U from the contents of V and TAU.
!>
!> CUPGTR constructs the matrix U from the contents of VP and TAU.
!>
!> CSTEQR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal. D2 is the matrix of
!> eigenvalues computed when Z is not computed.
!>
!> SSTERF computes D3, the matrix of eigenvalues, by the
!> PWK method, which does not yield eigenvectors.
!>
!> CPTEQR factors S as Z4 D4 Z4* , for a
!> Hermitian positive definite tridiagonal matrix.
!> D5 is the matrix of eigenvalues computed when Z is not
!> computed.
!>
!> SSTEBZ computes selected eigenvalues. WA1, WA2, and
!> WA3 will denote eigenvalues computed to high
!> absolute accuracy, with different range options.
!> WR will denote eigenvalues computed to high relative
!> accuracy.
!>
!> CSTEIN computes Y, the eigenvectors of S, given the
!> eigenvalues.
!>
!> CSTEDC factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). It may also
!> update an input unitary matrix, usually the output
!> from CHETRD/CUNGTR or CHPTRD/CUPGTR ('V' option). It may
!> also just compute eigenvalues ('N' option).
!>
!> CSTEMR factors S as Z D1 Z* , where Z is the unitary
!> matrix of eigenvectors and D1 is a diagonal matrix with
!> the eigenvalues on the diagonal ('I' option). CSTEMR
!> uses the Relatively Robust Representation whenever possible.
!>
!> When CCHKST2STG is called, a number of matrix () and a
!> number of matrix are specified. For each size ()
!> and each type of matrix, one matrix will be generated and used
!> to test the Hermitian eigenroutines. For each matrix, a number
!> of tests will be performed:
!>
!> (1) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='U', ... )
!>
!> (2) | I - UV* | / ( n ulp ) CUNGTR( UPLO='U', ... )
!>
!> (3) | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='L', ... )
!> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
!> eigenvalue matrix computed using S and D2 is the
!> eigenvalue matrix computed using S_2stage the output of
!> CHETRD_2STAGE(, ,....). D1 and D2 are computed
!> via DSTEQR('N',...)
!>
!> (4) | I - UV* | / ( n ulp ) CUNGTR( UPLO='L', ... )
!> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
!> eigenvalue matrix computed using S and D3 is the
!> eigenvalue matrix computed using S_2stage the output of
!> CHETRD_2STAGE(, ,....). D1 and D3 are computed
!> via DSTEQR('N',...)
!>
!> (5-8) Same as 1-4, but for CHPTRD and CUPGTR.
!>
!> (9) | S - Z D Z* | / ( |S| n ulp ) CSTEQR('V',...)
!>
!> (10) | I - ZZ* | / ( n ulp ) CSTEQR('V',...)
!>
!> (11) | D1 - D2 | / ( |D1| ulp ) CSTEQR('N',...)
!>
!> (12) | D1 - D3 | / ( |D1| ulp ) SSTERF
!>
!> (13) 0 if the true eigenvalues (computed by sturm count)
!> of S are within THRESH of
!> those in D1. 2*THRESH if they are not. (Tested using
!> SSTECH)
!>
!> For S positive definite,
!>
!> (14) | S - Z4 D4 Z4* | / ( |S| n ulp ) CPTEQR('V',...)
!>
!> (15) | I - Z4 Z4* | / ( n ulp ) CPTEQR('V',...)
!>
!> (16) | D4 - D5 | / ( 100 |D4| ulp ) CPTEQR('N',...)
!>
!> When S is also diagonally dominant by the factor gamma < 1,
!>
!> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> SSTEBZ( 'A', 'E', ...)
!>
!> (18) | WA1 - D3 | / ( |D3| ulp ) SSTEBZ( 'A', 'E', ...)
!>
!> (19) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> SSTEBZ( 'I', 'E', ...)
!>
!> (20) | S - Y WA1 Y* | / ( |S| n ulp ) SSTEBZ, CSTEIN
!>
!> (21) | I - Y Y* | / ( n ulp ) SSTEBZ, CSTEIN
!>
!> (22) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('I')
!>
!> (23) | I - ZZ* | / ( n ulp ) CSTEDC('I')
!>
!> (24) | S - Z D Z* | / ( |S| n ulp ) CSTEDC('V')
!>
!> (25) | I - ZZ* | / ( n ulp ) CSTEDC('V')
!>
!> (26) | D1 - D2 | / ( |D1| ulp ) CSTEDC('V') and
!> CSTEDC('N')
!>
!> Test 27 is disabled at the moment because CSTEMR does not
!> guarantee high relatvie accuracy.
!>
!> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> CSTEMR('V', 'A')
!>
!> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
!> i
!> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
!> CSTEMR('V', 'I')
!>
!> Tests 29 through 34 are disable at present because CSTEMR
!> does not handle partial spectrum requests.
!>
!> (29) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'I')
!>
!> (30) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'I')
!>
!> (31) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> CSTEMR('N', 'I') vs. CSTEMR('V', 'I')
!>
!> (32) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'V')
!>
!> (33) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'V')
!>
!> (34) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> CSTEMR('N', 'V') vs. CSTEMR('V', 'V')
!>
!> (35) | S - Z D Z* | / ( |S| n ulp ) CSTEMR('V', 'A')
!>
!> (36) | I - ZZ* | / ( n ulp ) CSTEMR('V', 'A')
!>
!> (37) ( max { min | WA2(i)-WA3(j) | } +
!> i j
!> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
!> i j
!> CSTEMR('N', 'A') vs. CSTEMR('V', 'A')
!>
!> The are specified by an array NN(1:NSIZES); the value of
!> each element NN(j) specifies one size.
!> The are specified by a logical array DOTYPE( 1:NTYPES );
!> if DOTYPE(j) is .TRUE., then matrix type will be generated.
!> Currently, the list of possible types is:
!>
!> (1) The zero matrix.
!> (2) The identity matrix.
!>
!> (3) A diagonal matrix with evenly spaced entries
!> 1, ..., ULP and random signs.
!> (ULP = (first number larger than 1) - 1 )
!> (4) A diagonal matrix with geometrically spaced entries
!> 1, ..., ULP and random signs.
!> (5) A diagonal matrix with entries 1, ULP, ..., ULP
!> and random signs.
!>
!> (6) Same as (4), but multiplied by SQRT( overflow threshold )
!> (7) Same as (4), but multiplied by SQRT( underflow threshold )
!>
!> (8) A matrix of the form U* D U, where U is unitary and
!> D has evenly spaced entries 1, ..., ULP with random signs
!> on the diagonal.
!>
!> (9) A matrix of the form U* D U, where U is unitary and
!> D has geometrically spaced entries 1, ..., ULP with random
!> signs on the diagonal.
!>
!> (10) A matrix of the form U* D U, where U is unitary and
!> D has entries 1, ULP,..., ULP with random
!> signs on the diagonal.
!>
!> (11) Same as (8), but multiplied by SQRT( overflow threshold )
!> (12) Same as (8), but multiplied by SQRT( underflow threshold )
!>
!> (13) Hermitian matrix with random entries chosen from (-1,1).
!> (14) Same as (13), but multiplied by SQRT( overflow threshold )
!> (15) Same as (13), but multiplied by SQRT( underflow threshold )
!> (16) Same as (8), but diagonal elements are all positive.
!> (17) Same as (9), but diagonal elements are all positive.
!> (18) Same as (10), but diagonal elements are all positive.
!> (19) Same as (16), but multiplied by SQRT( overflow threshold )
!> (20) Same as (16), but multiplied by SQRT( underflow threshold )
!> (21) A diagonally dominant tridiagonal matrix with geometrically
!> spaced diagonal entries 1, ..., ULP.
!> | [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CCHKST2STG does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CCHKST2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CCHKST2STG to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array of !> dimension ( LDA , max(NN) ) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> |
| [out] | AP | !> AP is COMPLEX array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix A stored in packed format. !> |
| [out] | SD | !> SD is REAL array of !> dimension( max(NN) ) !> The diagonal of the tridiagonal matrix computed by CHETRD. !> On exit, SD and SE contain the tridiagonal form of the !> matrix in A. !> |
| [out] | SE | !> SE is REAL array of !> dimension( max(NN) ) !> The off-diagonal of the tridiagonal matrix computed by !> CHETRD. On exit, SD and SE contain the tridiagonal form of !> the matrix in A. !> |
| [out] | D1 | !> D1 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> |
| [out] | D2 | !> D2 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> |
| [out] | D3 | !> D3 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by SSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> |
| [out] | D4 | !> D4 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CPTEQR(V). !> CPTEQR factors S as Z4 D4 Z4* !> On exit, the eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | D5 | !> D5 is REAL array of !> dimension( max(NN) ) !> The eigenvalues of A, as computed by CPTEQR(N) !> when Z is not computed. On exit, the !> eigenvalues in D4 correspond with the matrix in A. !> |
| [out] | WA1 | !> WA1 is REAL array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by SSTEBZ. !> |
| [out] | WA2 | !> WA2 is REAL array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by SSTEBZ. !> Choose random values for IL and IU, and ask for the !> IL-th through IU-th eigenvalues. !> |
| [out] | WA3 | !> WA3 is REAL array of !> dimension( max(NN) ) !> Selected eigenvalues of A, computed to high !> absolute accuracy, with different range options. !> as computed by SSTEBZ. !> Determine the values VL and VU of the IL-th and IU-th !> eigenvalues and ask for all eigenvalues in this range. !> |
| [out] | WR | !> WR is REAL array of !> dimension( max(NN) ) !> All eigenvalues of A, computed to high !> absolute accuracy, with different options. !> as computed by SSTEBZ. !> |
| [out] | U | !> U is COMPLEX array of !> dimension( LDU, max(NN) ). !> The unitary matrix computed by CHETRD + CUNGTR. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U, Z, and V. It must be at least 1 !> and at least max( NN ). !> |
| [out] | V | !> V is COMPLEX array of !> dimension( LDU, max(NN) ). !> The Housholder vectors computed by CHETRD in reducing A to !> tridiagonal form. The vectors computed with UPLO='U' are !> in the upper triangle, and the vectors computed with UPLO='L' !> are in the lower triangle. (As described in CHETRD, the !> sub- and superdiagonal are not set to 1, although the !> true Householder vector has a 1 in that position. The !> routines that use V, such as CUNGTR, set those entries to !> 1 before using them, and then restore them later.) !> |
| [out] | VP | !> VP is COMPLEX array of !> dimension( max(NN)*max(NN+1)/2 ) !> The matrix V stored in packed format. !> |
| [out] | TAU | !> TAU is COMPLEX array of !> dimension( max(NN) ) !> The Householder factors computed by CHETRD in reducing A !> to tridiagonal form. !> |
| [out] | Z | !> Z is COMPLEX array of !> dimension( LDU, max(NN) ). !> The unitary matrix of eigenvectors computed by CSTEQR, !> CPTEQR, and CSTEIN. !> |
| [out] | WORK | !> WORK is COMPLEX array of !> dimension( LWORK ) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2 !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | IWORK | !> IWORK is INTEGER array, !> Workspace. !> |
| [out] | LIWORK | !> LIWORK is INTEGER !> The number of entries in IWORK. This must be at least !> 6 + 6*Nmax + 5 * Nmax * lg Nmax !> where Nmax = max( NN(j), 2 ) and lg = log base 2. !> |
| [out] | RWORK | !> RWORK is REAL array !> |
| [in] | LRWORK | !> LRWORK is INTEGER !> The number of entries in LRWORK (dimension( ??? ) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (26) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -23: LDU < 1 or LDU < NMAX. !> -29: LWORK too small. !> If CLATMR, CLATMS, CHETRD, CUNGTR, CSTEQR, SSTERF, !> or CUNMC2 returns an error code, the !> absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NBLOCK Blocksize as returned by ENVIR. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far. !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> |
Definition at line 620 of file cchkst2stg.f.
| subroutine cckcsd | ( | integer | nm, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer, dimension( * ) | qval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | mmax, | ||
| complex, dimension( * ) | x, | ||
| complex, dimension( * ) | xf, | ||
| complex, dimension( * ) | u1, | ||
| complex, dimension( * ) | u2, | ||
| complex, dimension( * ) | v1t, | ||
| complex, dimension( * ) | v2t, | ||
| real, dimension( * ) | theta, | ||
| integer, dimension( * ) | iwork, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
CCKCSD
!> !> CCKCSD tests CUNCSD: !> the CSD for an M-by-M unitary matrix X partitioned as !> [ X11 X12; X21 X22 ]. X11 is P-by-Q. !>
| [in] | NM | !> NM is INTEGER !> The number of values of M contained in the vector MVAL. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension P. !> |
| [in] | QVAL | !> QVAL is INTEGER array, dimension (NM) !> The values of the matrix column dimension Q. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is REAL !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | MMAX | !> MMAX is INTEGER !> The maximum value permitted for M, used in dimensioning the !> work arrays. !> |
| [out] | X | !> X is COMPLEX array, dimension (MMAX*MMAX) !> |
| [out] | XF | !> XF is COMPLEX array, dimension (MMAX*MMAX) !> |
| [out] | U1 | !> U1 is COMPLEX array, dimension (MMAX*MMAX) !> |
| [out] | U2 | !> U2 is COMPLEX array, dimension (MMAX*MMAX) !> |
| [out] | V1T | !> V1T is COMPLEX array, dimension (MMAX*MMAX) !> |
| [out] | V2T | !> V2T is COMPLEX array, dimension (MMAX*MMAX) !> |
| [out] | THETA | !> THETA is REAL array, dimension (MMAX) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (MMAX) !> |
| [out] | WORK | !> WORK is COMPLEX array !> |
| [out] | RWORK | !> RWORK is REAL array !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If CLAROR returns an error code, the absolute value !> of it is returned. !> |
Definition at line 181 of file cckcsd.f.
| subroutine cckglm | ( | integer | nn, |
| integer, dimension( * ) | nval, | ||
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nmax, | ||
| complex, dimension( * ) | a, | ||
| complex, dimension( * ) | af, | ||
| complex, dimension( * ) | b, | ||
| complex, dimension( * ) | bf, | ||
| complex, dimension( * ) | x, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
CCKGLM
!> !> CCKGLM tests CGGGLM - subroutine for solving generalized linear !> model problem. !>
| [in] | NN | !> NN is INTEGER !> The number of values of N, M and P contained in the vectors !> NVAL, MVAL and PVAL. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix row dimension N. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NN) !> The values of the matrix column dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NN) !> The values of the matrix column dimension P. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is REAL !> The threshold value for the test ratios. A result is !> included in the output file if RESID >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | B | !> B is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | X | !> X is COMPLEX array, dimension (4*NMAX) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NMAX*NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If CLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 165 of file cckglm.f.
| subroutine cckgqr | ( | integer | nm, |
| integer, dimension( * ) | mval, | ||
| integer | np, | ||
| integer, dimension( * ) | pval, | ||
| integer | nn, | ||
| integer, dimension( * ) | nval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nmax, | ||
| complex, dimension( * ) | a, | ||
| complex, dimension( * ) | af, | ||
| complex, dimension( * ) | aq, | ||
| complex, dimension( * ) | ar, | ||
| complex, dimension( * ) | taua, | ||
| complex, dimension( * ) | b, | ||
| complex, dimension( * ) | bf, | ||
| complex, dimension( * ) | bz, | ||
| complex, dimension( * ) | bt, | ||
| complex, dimension( * ) | bwk, | ||
| complex, dimension( * ) | taub, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
CCKGQR
!> !> CCKGQR tests !> CGGQRF: GQR factorization for N-by-M matrix A and N-by-P matrix B, !> CGGRQF: GRQ factorization for M-by-N matrix A and P-by-N matrix B. !>
| [in] | NM | !> NM is INTEGER !> The number of values of M contained in the vector MVAL. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row(column) dimension M. !> |
| [in] | NP | !> NP is INTEGER !> The number of values of P contained in the vector PVAL. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NP) !> The values of the matrix row(column) dimension P. !> |
| [in] | NN | !> NN is INTEGER !> The number of values of N contained in the vector NVAL. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix column(row) dimension N. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is REAL !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | AQ | !> AQ is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | AR | !> AR is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | TAUA | !> TAUA is COMPLEX array, dimension (NMAX) !> |
| [out] | B | !> B is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BZ | !> BZ is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BT | !> BT is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BWK | !> BWK is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | TAUB | !> TAUB is COMPLEX array, dimension (NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If CLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 208 of file cckgqr.f.
| subroutine cckgsv | ( | integer | nm, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer, dimension( * ) | nval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nmax, | ||
| complex, dimension( * ) | a, | ||
| complex, dimension( * ) | af, | ||
| complex, dimension( * ) | b, | ||
| complex, dimension( * ) | bf, | ||
| complex, dimension( * ) | u, | ||
| complex, dimension( * ) | v, | ||
| complex, dimension( * ) | q, | ||
| real, dimension( * ) | alpha, | ||
| real, dimension( * ) | beta, | ||
| complex, dimension( * ) | r, | ||
| integer, dimension( * ) | iwork, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
CCKGSV
!> !> CCKGSV tests CGGSVD: !> the GSVD for M-by-N matrix A and P-by-N matrix B. !>
| [in] | NM | !> NM is INTEGER !> The number of values of M contained in the vector MVAL. !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NM) !> The values of the matrix row dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NP) !> The values of the matrix row dimension P. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix column dimension N. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is REAL !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | B | !> B is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | U | !> U is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | V | !> V is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | Q | !> Q is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | ALPHA | !> ALPHA is REAL array, dimension (NMAX) !> |
| [out] | BETA | !> BETA is REAL array, dimension (NMAX) !> |
| [out] | R | !> R is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If CLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 195 of file cckgsv.f.
| subroutine ccklse | ( | integer | nn, |
| integer, dimension( * ) | mval, | ||
| integer, dimension( * ) | pval, | ||
| integer, dimension( * ) | nval, | ||
| integer | nmats, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nmax, | ||
| complex, dimension( * ) | a, | ||
| complex, dimension( * ) | af, | ||
| complex, dimension( * ) | b, | ||
| complex, dimension( * ) | bf, | ||
| complex, dimension( * ) | x, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| integer | nin, | ||
| integer | nout, | ||
| integer | info ) |
CCKLSE
!> !> CCKLSE tests CGGLSE - a subroutine for solving linear equality !> constrained least square problem (LSE). !>
| [in] | NN | !> NN is INTEGER !> The number of values of (M,P,N) contained in the vectors !> (MVAL, PVAL, NVAL). !> |
| [in] | MVAL | !> MVAL is INTEGER array, dimension (NN) !> The values of the matrix row(column) dimension M. !> |
| [in] | PVAL | !> PVAL is INTEGER array, dimension (NN) !> The values of the matrix row(column) dimension P. !> |
| [in] | NVAL | !> NVAL is INTEGER array, dimension (NN) !> The values of the matrix column(row) dimension N. !> |
| [in] | NMATS | !> NMATS is INTEGER !> The number of matrix types to be tested for each combination !> of matrix dimensions. If NMATS >= NTYPES (the maximum !> number of matrix types), then all the different types are !> generated for testing. If NMATS < NTYPES, another input line !> is read to get the numbers of the matrix types to be used. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry, the seed of the random number generator. The array !> elements should be between 0 and 4095, otherwise they will be !> reduced mod 4096, and ISEED(4) must be odd. !> On exit, the next seed in the random number sequence after !> all the test matrices have been generated. !> |
| [in] | THRESH | !> THRESH is REAL !> The threshold value for the test ratios. A result is !> included in the output file if RESULT >= THRESH. To have !> every test ratio printed, use THRESH = 0. !> |
| [in] | NMAX | !> NMAX is INTEGER !> The maximum value permitted for M or N, used in dimensioning !> the work arrays. !> |
| [out] | A | !> A is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | AF | !> AF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | B | !> B is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | BF | !> BF is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | X | !> X is COMPLEX array, dimension (5*NMAX) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NMAX*NMAX) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (NMAX) !> |
| [in] | NIN | !> NIN is INTEGER !> The unit number for input. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The unit number for output. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0 : successful exit !> > 0 : If CLATMS returns an error code, the absolute value !> of it is returned. !> |
Definition at line 165 of file ccklse.f.
| subroutine ccsdts | ( | integer | m, |
| integer | p, | ||
| integer | q, | ||
| complex, dimension( ldx, * ) | x, | ||
| complex, dimension( ldx, * ) | xf, | ||
| integer | ldx, | ||
| complex, dimension( ldu1, * ) | u1, | ||
| integer | ldu1, | ||
| complex, dimension( ldu2, * ) | u2, | ||
| integer | ldu2, | ||
| complex, dimension( ldv1t, * ) | v1t, | ||
| integer | ldv1t, | ||
| complex, dimension( ldv2t, * ) | v2t, | ||
| integer | ldv2t, | ||
| real, dimension( * ) | theta, | ||
| integer, dimension( * ) | iwork, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 15 ) | result ) |
CCSDTS
!> !> CCSDTS tests CUNCSD, which, given an M-by-M partitioned unitary !> matrix X, !> Q M-Q !> X = [ X11 X12 ] P , !> [ X21 X22 ] M-P !> !> computes the CSD !> !> [ U1 ]**T * [ X11 X12 ] * [ V1 ] !> [ U2 ] [ X21 X22 ] [ V2 ] !> !> [ I 0 0 | 0 0 0 ] !> [ 0 C 0 | 0 -S 0 ] !> [ 0 0 0 | 0 0 -I ] !> = [---------------------] = [ D11 D12 ] . !> [ 0 0 0 | I 0 0 ] [ D21 D22 ] !> [ 0 S 0 | 0 C 0 ] !> [ 0 0 I | 0 0 0 ] !> !> and also SORCSD2BY1, which, given !> Q !> [ X11 ] P , !> [ X21 ] M-P !> !> computes the 2-by-1 CSD !> !> [ I 0 0 ] !> [ 0 C 0 ] !> [ 0 0 0 ] !> [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] , !> [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ] !> [ 0 S 0 ] !> [ 0 0 I ] !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix X. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix X11. P >= 0. !> |
| [in] | Q | !> Q is INTEGER !> The number of columns of the matrix X11. Q >= 0. !> |
| [in] | X | !> X is COMPLEX array, dimension (LDX,M) !> The M-by-M matrix X. !> |
| [out] | XF | !> XF is COMPLEX array, dimension (LDX,M) !> Details of the CSD of X, as returned by CUNCSD; !> see CUNCSD for further details. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the arrays X and XF. !> LDX >= max( 1,M ). !> |
| [out] | U1 | !> U1 is COMPLEX array, dimension(LDU1,P) !> The P-by-P unitary matrix U1. !> |
| [in] | LDU1 | !> LDU1 is INTEGER !> The leading dimension of the array U1. LDU >= max(1,P). !> |
| [out] | U2 | !> U2 is COMPLEX array, dimension(LDU2,M-P) !> The (M-P)-by-(M-P) unitary matrix U2. !> |
| [in] | LDU2 | !> LDU2 is INTEGER !> The leading dimension of the array U2. LDU >= max(1,M-P). !> |
| [out] | V1T | !> V1T is COMPLEX array, dimension(LDV1T,Q) !> The Q-by-Q unitary matrix V1T. !> |
| [in] | LDV1T | !> LDV1T is INTEGER !> The leading dimension of the array V1T. LDV1T >= !> max(1,Q). !> |
| [out] | V2T | !> V2T is COMPLEX array, dimension(LDV2T,M-Q) !> The (M-Q)-by-(M-Q) unitary matrix V2T. !> |
| [in] | LDV2T | !> LDV2T is INTEGER !> The leading dimension of the array V2T. LDV2T >= !> max(1,M-Q). !> |
| [out] | THETA | !> THETA is REAL array, dimension MIN(P,M-P,Q,M-Q) !> The CS values of X; the essentially diagonal matrices C and !> S are constructed from THETA; see subroutine CUNCSD for !> details. !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (M) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK !> |
| [out] | RWORK | !> RWORK is REAL array !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (15) !> The test ratios: !> First, the 2-by-2 CSD: !> RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) !> RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) !> RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) !> RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) !> RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) !> RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) !> RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) !> RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP ) !> RESULT(9) = 0 if THETA is in increasing order and !> all angles are in [0,pi/2] !> = ULPINV otherwise. !> Then, the 2-by-1 CSD: !> RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) !> RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) !> RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) !> RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) !> RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) !> RESULT(15) = 0 if THETA is in increasing order and !> all angles are in [0,pi/2] !> = ULPINV otherwise. !> ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). ) !> |
Definition at line 226 of file ccsdts.f.
| subroutine cdrges | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | s, | ||
| complex, dimension( lda, * ) | t, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( ldq, * ) | z, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 13 ) | result, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CDRGES
!> !> CDRGES checks the nonsymmetric generalized eigenvalue (Schur form) !> problem driver CGGES. !> !> CGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorder the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms. !> !> When CDRGES is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each TYPE of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following 13 tests !> will be performed and compared with the threshold THRESH except !> the tests (5), (11) and (13). !> !> !> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues) !> !> !> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues) !> !> !> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues) !> !> !> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues) !> !> (5) if A is in Schur form (i.e. triangular form) (no sorting of !> eigenvalues) !> !> (6) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e., test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (no sorting of eigenvalues) !> !> (7) | (A,B) - Q (S,T) Z' | / ( |(A,B)| n ulp ) !> (with sorting of eigenvalues). !> !> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) if A is in Schur form (i.e. quasi-triangular form) !> (with sorting of eigenvalues). !> !> (11) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e. test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (with sorting of eigenvalues). !> !> (12) if sorting worked and SDIM is the number of eigenvalues !> which were CELECTed. !> !> Test Matrices !> ============= !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> SDRGES does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, SDRGES !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A on input. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to SDRGES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. THRESH >= 0. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by CGGES. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by CGGES. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDQ, max(NN)) !> The (left) orthogonal matrix computed by CGGES. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by CGGES. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by CGGES. !> ALPHA(k) / BETA(k) is the k-th generalized eigenvalue of A !> and B. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*N*N. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension ( 8*N ) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 378 of file cdrges.f.
| subroutine cdrges3 | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | s, | ||
| complex, dimension( lda, * ) | t, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( ldq, * ) | z, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 13 ) | result, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CDRGES3
!> !> CDRGES3 checks the nonsymmetric generalized eigenvalue (Schur form) !> problem driver CGGES3. !> !> CGGES3 factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorder the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms. !> !> When CDRGES3 is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each TYPE of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following 13 tests !> will be performed and compared with the threshold THRESH except !> the tests (5), (11) and (13). !> !> !> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues) !> !> !> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues) !> !> !> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues) !> !> !> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues) !> !> (5) if A is in Schur form (i.e. triangular form) (no sorting of !> eigenvalues) !> !> (6) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e., test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (no sorting of eigenvalues) !> !> (7) | (A,B) - Q (S,T) Z' | / ( |(A,B)| n ulp ) !> (with sorting of eigenvalues). !> !> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) if A is in Schur form (i.e. quasi-triangular form) !> (with sorting of eigenvalues). !> !> (11) if eigenvalues = diagonal elements of the Schur form (S, T), !> i.e. test the maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (with sorting of eigenvalues). !> !> (12) if sorting worked and SDIM is the number of eigenvalues !> which were CELECTed. !> !> Test Matrices !> ============= !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> SDRGES3 does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, SDRGES3 !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A on input. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to SDRGES3 to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. THRESH >= 0. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by CGGES3. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by CGGES3. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDQ, max(NN)) !> The (left) orthogonal matrix computed by CGGES3. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by CGGES3. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by CGGES3. !> ALPHA(k) / BETA(k) is the k-th generalized eigenvalue of A !> and B. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*N*N. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension ( 8*N ) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (15) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 378 of file cdrges3.f.
| subroutine cdrgev | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | s, | ||
| complex, dimension( lda, * ) | t, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( ldq, * ) | z, | ||
| complex, dimension( ldqe, * ) | qe, | ||
| integer | ldqe, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( * ) | alpha1, | ||
| complex, dimension( * ) | beta1, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CDRGEV
!> !> CDRGEV checks the nonsymmetric generalized eigenvalue problem driver !> routine CGGEV. !> !> CGGEV computes for a pair of n-by-n nonsymmetric matrices (A,B) the !> generalized eigenvalues and, optionally, the left and right !> eigenvectors. !> !> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w !> or a ratio alpha/beta = w, such that A - w*B is singular. It is !> usually represented as the pair (alpha,beta), as there is reasonable !> interpretation for beta=0, and even for both being zero. !> !> A right generalized eigenvector corresponding to a generalized !> eigenvalue w for a pair of matrices (A,B) is a vector r such that !> (A - wB) * r = 0. A left generalized eigenvector is a vector l such !> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l. !> !> When CDRGEV is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following tests !> will be performed and compared with the threshold THRESH. !> !> Results from CGGEV: !> !> (1) max over all left eigenvalue/-vector pairs (alpha/beta,l) of !> !> | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) ) !> !> where VL**H is the conjugate-transpose of VL. !> !> (2) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (3) max over all right eigenvalue/-vector pairs (alpha/beta,r) of !> !> | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) ) !> !> (4) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (5) W(full) = W(partial) !> W(full) denotes the eigenvalues computed when both l and r !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and r, or only W and l are !> computed. !> !> (6) VL(full) = VL(partial) !> VL(full) denotes the left eigenvectors computed when both l !> and r are computed, and VL(partial) denotes the result !> when only l is computed. !> !> (7) VR(full) = VR(partial) !> VR(full) denotes the right eigenvectors computed when both l !> and r are also computed, and VR(partial) denotes the result !> when only l is computed. !> !> !> Test Matrices !> ---- -------- !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRGES does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CDRGEV !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRGES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IERR not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by CGGEV. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by CGGEV. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDQ, max(NN)) !> The (left) eigenvectors matrix computed by CGGEV. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by CGGEV. !> |
| [out] | QE | !> QE is COMPLEX array, dimension( LDQ, max(NN) ) !> QE holds the computed right or left eigenvectors. !> |
| [in] | LDQE | !> LDQE is INTEGER !> The leading dimension of QE. LDQE >= max(1,max(NN)). !> |
| [out] | ALPHA | !> ALPHA is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by CGGEV. !> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th !> generalized eigenvalue of A and B. !> |
| [out] | ALPHA1 | !> ALPHA1 is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA1 | !> BETA1 is COMPLEX array, dimension (max(NN)) !> !> Like ALPHAR, ALPHAI, BETA, these arrays contain the !> eigenvalues of A and B, but those computed when CGGEV only !> computes a partial eigendecomposition, i.e. not the !> eigenvalues and left and right eigenvectors. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. LWORK >= N*(N+1) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (8*N) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 395 of file cdrgev.f.
| subroutine cdrgev3 | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | s, | ||
| complex, dimension( lda, * ) | t, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( ldq, * ) | z, | ||
| complex, dimension( ldqe, * ) | qe, | ||
| integer | ldqe, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( * ) | alpha1, | ||
| complex, dimension( * ) | beta1, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CDRGEV3
!> !> CDRGEV3 checks the nonsymmetric generalized eigenvalue problem driver !> routine CGGEV3. !> !> CGGEV3 computes for a pair of n-by-n nonsymmetric matrices (A,B) the !> generalized eigenvalues and, optionally, the left and right !> eigenvectors. !> !> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w !> or a ratio alpha/beta = w, such that A - w*B is singular. It is !> usually represented as the pair (alpha,beta), as there is reasonable !> interpretation for beta=0, and even for both being zero. !> !> A right generalized eigenvector corresponding to a generalized !> eigenvalue w for a pair of matrices (A,B) is a vector r such that !> (A - wB) * r = 0. A left generalized eigenvector is a vector l such !> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l. !> !> When CDRGEV3 is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, a pair of matrices (A, B) will be generated !> and used for testing. For each matrix pair, the following tests !> will be performed and compared with the threshold THRESH. !> !> Results from CGGEV3: !> !> (1) max over all left eigenvalue/-vector pairs (alpha/beta,l) of !> !> | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) ) !> !> where VL**H is the conjugate-transpose of VL. !> !> (2) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (3) max over all left eigenvalue/-vector pairs (alpha/beta,r) of !> !> | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) ) !> !> (4) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (5) W(full) = W(partial) !> W(full) denotes the eigenvalues computed when both l and r !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and r, or only W and l are !> computed. !> !> (6) VL(full) = VL(partial) !> VL(full) denotes the left eigenvectors computed when both l !> and r are computed, and VL(partial) denotes the result !> when only l is computed. !> !> (7) VR(full) = VR(partial) !> VR(full) denotes the right eigenvectors computed when both l !> and r are also computed, and VR(partial) denotes the result !> when only l is computed. !> !> !> Test Matrices !> ---- -------- !> !> The sizes of the test matrices are specified by an array !> NN(1:NSIZES); the value of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); if !> DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) ( 0, 0 ) (a pair of zero matrices) !> !> (2) ( I, 0 ) (an identity and a zero matrix) !> !> (3) ( 0, I ) (an identity and a zero matrix) !> !> (4) ( I, I ) (a pair of identity matrices) !> !> t t !> (5) ( J , J ) (a pair of transposed Jordan blocks) !> !> t ( I 0 ) !> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t ) !> ( 0 I ) ( 0 J ) !> and I is a k x k identity and J a (k+1)x(k+1) !> Jordan block; k=(N-1)/2 !> !> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal !> matrix with those diagonal entries.) !> (8) ( I, D ) !> !> (9) ( big*D, small*I ) where is near overflow and small=1/big !> !> (10) ( small*D, big*I ) !> !> (11) ( big*I, small*D ) !> !> (12) ( small*I, big*D ) !> !> (13) ( big*D, big*I ) !> !> (14) ( small*D, small*I ) !> !> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and !> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 ) !> t t !> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices. !> !> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices !> with random O(1) entries above the diagonal !> and diagonal entries diag(T1) = !> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) = !> ( 0, N-3, N-4,..., 1, 0, 0 ) !> !> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 ) !> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 ) !> s = machine precision. !> !> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 ) !> !> N-5 !> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> !> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 ) !> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 ) !> where r1,..., r(N-4) are random. !> !> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 ) !> diag(T2) = ( 0, 1, ..., 1, 0, 0 ) !> !> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular !> matrices. !> !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRGEV3 does nothing. NSIZES >= 0. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. NN >= 0. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CDRGEV3 !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRGEV3 to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error is !> scaled to be O(1), so THRESH should be a reasonably small !> multiple of 1, e.g., 10 or 100. In particular, it should !> not depend on the precision (single vs. double) or the size !> of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IERR not equal to 0.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original A matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, S, and T. !> It must be at least 1 and at least max( NN ). !> |
| [in,out] | B | !> B is COMPLEX array, dimension(LDA, max(NN)) !> Used to hold the original B matrix. Used as input only !> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and !> DOTYPE(MAXTYP+1)=.TRUE. !> |
| [out] | S | !> S is COMPLEX array, dimension (LDA, max(NN)) !> The Schur form matrix computed from A by CGGEV3. On exit, S !> contains the Schur form matrix corresponding to the matrix !> in A. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDA, max(NN)) !> The upper triangular matrix computed from B by CGGEV3. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDQ, max(NN)) !> The (left) eigenvectors matrix computed by CGGEV3. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of Q and Z. It must !> be at least 1 and at least max( NN ). !> |
| [out] | Z | !> Z is COMPLEX array, dimension( LDQ, max(NN) ) !> The (right) orthogonal matrix computed by CGGEV3. !> |
| [out] | QE | !> QE is COMPLEX array, dimension( LDQ, max(NN) ) !> QE holds the computed right or left eigenvectors. !> |
| [in] | LDQE | !> LDQE is INTEGER !> The leading dimension of QE. LDQE >= max(1,max(NN)). !> |
| [out] | ALPHA | !> ALPHA is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA | !> BETA is COMPLEX array, dimension (max(NN)) !> !> The generalized eigenvalues of (A,B) computed by CGGEV3. !> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th !> generalized eigenvalue of A and B. !> |
| [out] | ALPHA1 | !> ALPHA1 is COMPLEX array, dimension (max(NN)) !> |
| [out] | BETA1 | !> BETA1 is COMPLEX array, dimension (max(NN)) !> !> Like ALPHAR, ALPHAI, BETA, these arrays contain the !> eigenvalues of A and B, but those computed when CGGEV3 only !> computes a partial eigendecomposition, i.e. not the !> eigenvalues and left and right eigenvectors. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. LWORK >= N*(N+1) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (8*N) !> Real workspace. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. INFO is the !> absolute value of the INFO value returned. !> |
Definition at line 395 of file cdrgev3.f.
| subroutine cdrgsx | ( | integer | nsize, |
| integer | ncmax, | ||
| real | thresh, | ||
| integer | nin, | ||
| integer | nout, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | ai, | ||
| complex, dimension( lda, * ) | bi, | ||
| complex, dimension( lda, * ) | z, | ||
| complex, dimension( lda, * ) | q, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| real, dimension( * ) | s, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CDRGSX
!> !> CDRGSX checks the nonsymmetric generalized eigenvalue (Schur form) !> problem expert driver CGGESX. !> !> CGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate !> transpose, S and T are upper triangular (i.e., in generalized Schur !> form), and Q and Z are unitary. It also computes the generalized !> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus, !> w(j) = alpha(j)/beta(j) is a root of the characteristic equation !> !> det( A - w(j) B ) = 0 !> !> Optionally it also reorders the eigenvalues so that a selected !> cluster of eigenvalues appears in the leading diagonal block of the !> Schur forms; computes a reciprocal condition number for the average !> of the selected eigenvalues; and computes a reciprocal condition !> number for the right and left deflating subspaces corresponding to !> the selected eigenvalues. !> !> When CDRGSX is called with NSIZE > 0, five (5) types of built-in !> matrix pairs are used to test the routine CGGESX. !> !> When CDRGSX is called with NSIZE = 0, it reads in test matrix data !> to test CGGESX. !> (need more details on what kind of read-in data are needed). !> !> For each matrix pair, the following tests will be performed and !> compared with the threshold THRESH except for the tests (7) and (9): !> !> (1) | A - Q S Z' | / ( |A| n ulp ) !> !> (2) | B - Q T Z' | / ( |B| n ulp ) !> !> (3) | I - QQ' | / ( n ulp ) !> !> (4) | I - ZZ' | / ( n ulp ) !> !> (5) if A is in Schur form (i.e. triangular form) !> !> (6) maximum over j of D(j) where: !> !> |alpha(j) - S(j,j)| |beta(j) - T(j,j)| !> D(j) = ------------------------ + ----------------------- !> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) !> !> (7) if sorting worked and SDIM is the number of eigenvalues !> which were selected. !> !> (8) the estimated value DIF does not differ from the true values of !> Difu and Difl more than a factor 10*THRESH. If the estimate DIF !> equals zero the corresponding true values of Difu and Difl !> should be less than EPS*norm(A, B). If the true value of Difu !> and Difl equal zero, the estimate DIF should be less than !> EPS*norm(A, B). !> !> (9) If INFO = N+3 is returned by CGGESX, the reordering !> and we check that DIF = PL = PR = 0 and that the true value of !> Difu and Difl is < EPS*norm(A, B). We count the events when !> INFO=N+3. !> !> For read-in test matrices, the same tests are run except that the !> exact value for DIF (and PL) is input data. Additionally, there is !> one more test run for read-in test matrices: !> !> (10) the estimated value PL does not differ from the true value of !> PLTRU more than a factor THRESH. If the estimate PL equals !> zero the corresponding true value of PLTRU should be less than !> EPS*norm(A, B). If the true value of PLTRU equal zero, the !> estimate PL should be less than EPS*norm(A, B). !> !> Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1) !> matrix pairs are generated and tested. NSIZE should be kept small. !> !> SVD (routine CGESVD) is used for computing the true value of DIF_u !> and DIF_l when testing the built-in test problems. !> !> Built-in Test Matrices !> ====================== !> !> All built-in test matrices are the 2 by 2 block of triangular !> matrices !> !> A = [ A11 A12 ] and B = [ B11 B12 ] !> [ A22 ] [ B22 ] !> !> where for different type of A11 and A22 are given as the following. !> A12 and B12 are chosen so that the generalized Sylvester equation !> !> A11*R - L*A22 = -A12 !> B11*R - L*B22 = -B12 !> !> have prescribed solution R and L. !> !> Type 1: A11 = J_m(1,-1) and A_22 = J_k(1-a,1). !> B11 = I_m, B22 = I_k !> where J_k(a,b) is the k-by-k Jordan block with ``a'' on !> diagonal and ``b'' on superdiagonal. !> !> Type 2: A11 = (a_ij) = ( 2(.5-sin(i)) ) and !> B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m !> A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and !> B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k !> !> Type 3: A11, A22 and B11, B22 are chosen as for Type 2, but each !> second diagonal block in A_11 and each third diagonal block !> in A_22 are made as 2 by 2 blocks. !> !> Type 4: A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) ) !> for i=1,...,m, j=1,...,m and !> A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) ) !> for i=m+1,...,k, j=m+1,...,k !> !> Type 5: (A,B) and have potentially close or common eigenvalues and !> very large departure from block diagonality A_11 is chosen !> as the m x m leading submatrix of A_1: !> | 1 b | !> | -b 1 | !> | 1+d b | !> | -b 1+d | !> A_1 = | d 1 | !> | -1 d | !> | -d 1 | !> | -1 -d | !> | 1 | !> and A_22 is chosen as the k x k leading submatrix of A_2: !> | -1 b | !> | -b -1 | !> | 1-d b | !> | -b 1-d | !> A_2 = | d 1+b | !> | -1-b d | !> | -d 1+b | !> | -1+b -d | !> | 1-d | !> and matrix B are chosen as identity matrices (see SLATM5). !> !>
| [in] | NSIZE | !> NSIZE is INTEGER !> The maximum size of the matrices to use. NSIZE >= 0. !> If NSIZE = 0, no built-in tests matrices are used, but !> read-in test matrices are used to test SGGESX. !> |
| [in] | NCMAX | !> NCMAX is INTEGER !> Maximum allowable NMAX for generating Kroneker matrix !> in call to CLAKF2 !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. THRESH >= 0. !> |
| [in] | NIN | !> NIN is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, NSIZE) !> Used to store the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, AI, BI, Z and Q, !> LDA >= max( 1, NSIZE ). For the read-in test, !> LDA >= max( 1, N ), N is the size of the test matrices. !> |
| [out] | B | !> B is COMPLEX array, dimension (LDA, NSIZE) !> Used to store the matrix whose eigenvalues are to be !> computed. On exit, B contains the last matrix actually used. !> |
| [out] | AI | !> AI is COMPLEX array, dimension (LDA, NSIZE) !> Copy of A, modified by CGGESX. !> |
| [out] | BI | !> BI is COMPLEX array, dimension (LDA, NSIZE) !> Copy of B, modified by CGGESX. !> |
| [out] | Z | !> Z is COMPLEX array, dimension (LDA, NSIZE) !> Z holds the left Schur vectors computed by CGGESX. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDA, NSIZE) !> Q holds the right Schur vectors computed by CGGESX. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX array, dimension (NSIZE) !> |
| [out] | BETA | !> BETA is COMPLEX array, dimension (NSIZE) !> !> On exit, ALPHA/BETA are the eigenvalues. !> |
| [out] | C | !> C is COMPLEX array, dimension (LDC, LDC) !> Store the matrix generated by subroutine CLAKF2, this is the !> matrix formed by Kronecker products used for estimating !> DIF. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of C. LDC >= max(1, LDA*LDA/2 ). !> |
| [out] | S | !> S is REAL array, dimension (LDC) !> Singular values of C !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 3*NSIZE*NSIZE/2 !> |
| [out] | RWORK | !> RWORK is REAL array, !> dimension (5*NSIZE*NSIZE/2 - 4) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> The dimension of the array IWORK. LIWORK >= NSIZE + 2. !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (NSIZE) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. !> |
Definition at line 346 of file cdrgsx.f.
| subroutine cdrgvx | ( | integer | nsize, |
| real | thresh, | ||
| integer | nin, | ||
| integer | nout, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | b, | ||
| complex, dimension( lda, * ) | ai, | ||
| complex, dimension( lda, * ) | bi, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( lda, * ) | vl, | ||
| complex, dimension( lda, * ) | vr, | ||
| integer | ilo, | ||
| integer | ihi, | ||
| real, dimension( * ) | lscale, | ||
| real, dimension( * ) | rscale, | ||
| real, dimension( * ) | s, | ||
| real, dimension( * ) | stru, | ||
| real, dimension( * ) | dif, | ||
| real, dimension( * ) | diftru, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( 4 ) | result, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CDRGVX
!>
!> CDRGVX checks the nonsymmetric generalized eigenvalue problem
!> expert driver CGGEVX.
!>
!> CGGEVX computes the generalized eigenvalues, (optionally) the left
!> and/or right eigenvectors, (optionally) computes a balancing
!> transformation to improve the conditioning, and (optionally)
!> reciprocal condition numbers for the eigenvalues and eigenvectors.
!>
!> When CDRGVX is called with NSIZE > 0, two types of test matrix pairs
!> are generated by the subroutine SLATM6 and test the driver CGGEVX.
!> The test matrices have the known exact condition numbers for
!> eigenvalues. For the condition numbers of the eigenvectors
!> corresponding the first and last eigenvalues are also know
!> ``exactly'' (see CLATM6).
!> For each matrix pair, the following tests will be performed and
!> compared with the threshold THRESH.
!>
!> (1) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
!>
!> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )
!>
!> where l**H is the conjugate tranpose of l.
!>
!> (2) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
!>
!> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
!>
!> (3) The condition number S(i) of eigenvalues computed by CGGEVX
!> differs less than a factor THRESH from the exact S(i) (see
!> CLATM6).
!>
!> (4) DIF(i) computed by CTGSNA differs less than a factor 10*THRESH
!> from the exact value (for the 1st and 5th vectors only).
!>
!> Test Matrices
!> =============
!>
!> Two kinds of test matrix pairs
!> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
!> are used in the tests:
!>
!> 1: Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
!> 0 2+a 0 0 0 0 1 0 0 0
!> 0 0 3+a 0 0 0 0 1 0 0
!> 0 0 0 4+a 0 0 0 0 1 0
!> 0 0 0 0 5+a , 0 0 0 0 1 , and
!>
!> 2: Da = 1 -1 0 0 0 Db = 1 0 0 0 0
!> 1 1 0 0 0 0 1 0 0 0
!> 0 0 1 0 0 0 0 1 0 0
!> 0 0 0 1+a 1+b 0 0 0 1 0
!> 0 0 0 -1-b 1+a , 0 0 0 0 1 .
!>
!> In both cases the same inverse(YH) and inverse(X) are used to compute
!> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
!>
!> YH: = 1 0 -y y -y X = 1 0 -x -x x
!> 0 1 -y y -y 0 1 x -x -x
!> 0 0 1 0 0 0 0 1 0 0
!> 0 0 0 1 0 0 0 0 1 0
!> 0 0 0 0 1, 0 0 0 0 1 , where
!>
!> a, b, x and y will have all values independently of each other from
!> { sqrt(sqrt(ULP)), 0.1, 1, 10, 1/sqrt(sqrt(ULP)) }.
!> | [in] | NSIZE | !> NSIZE is INTEGER !> The number of sizes of matrices to use. NSIZE must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIN will be !> tested. If it is not zero, then N = 5. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NIN | !> NIN is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUT | !> NOUT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, NSIZE) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, B, AI, BI, Ao, and Bo. !> It must be at least 1 and at least NSIZE. !> |
| [out] | B | !> B is COMPLEX array, dimension (LDA, NSIZE) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, B contains the last matrix actually used. !> |
| [out] | AI | !> AI is COMPLEX array, dimension (LDA, NSIZE) !> Copy of A, modified by CGGEVX. !> |
| [out] | BI | !> BI is COMPLEX array, dimension (LDA, NSIZE) !> Copy of B, modified by CGGEVX. !> |
| [out] | ALPHA | !> ALPHA is COMPLEX array, dimension (NSIZE) !> |
| [out] | BETA | !> BETA is COMPLEX array, dimension (NSIZE) !> !> On exit, ALPHA/BETA are the eigenvalues. !> |
| [out] | VL | !> VL is COMPLEX array, dimension (LDA, NSIZE) !> VL holds the left eigenvectors computed by CGGEVX. !> |
| [out] | VR | !> VR is COMPLEX array, dimension (LDA, NSIZE) !> VR holds the right eigenvectors computed by CGGEVX. !> |
| [out] | ILO | !> ILO is INTEGER !> |
| [out] | IHI | !> IHI is INTEGER !> |
| [out] | LSCALE | !> LSCALE is REAL array, dimension (N) !> |
| [out] | RSCALE | !> RSCALE is REAL array, dimension (N) !> |
| [out] | S | !> S is REAL array, dimension (N) !> |
| [out] | STRU | !> STRU is REAL array, dimension (N) !> |
| [out] | DIF | !> DIF is REAL array, dimension (N) !> |
| [out] | DIFTRU | !> DIFTRU is REAL array, dimension (N) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> Leading dimension of WORK. LWORK >= 2*N*N + 2*N !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (6*N) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (LIWORK) !> |
| [in] | LIWORK | !> LIWORK is INTEGER !> Leading dimension of IWORK. LIWORK >= N+2. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (4) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: A routine returned an error code. !> |
Definition at line 294 of file cdrgvx.f.
| subroutine cdrvbd | ( | integer | nsizes, |
| integer, dimension( * ) | mm, | ||
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldvt, * ) | vt, | ||
| integer | ldvt, | ||
| complex, dimension( lda, * ) | asav, | ||
| complex, dimension( ldu, * ) | usav, | ||
| complex, dimension( ldvt, * ) | vtsav, | ||
| real, dimension( * ) | s, | ||
| real, dimension( * ) | ssav, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | nounit, | ||
| integer | info ) |
CDRVBD
!> !> CDRVBD checks the singular value decomposition (SVD) driver CGESVD, !> CGESDD, CGESVJ, CGEJSV, CGESVDX, and CGESVDQ. !> !> CGESVD and CGESDD factors A = U diag(S) VT, where U and VT are !> unitary and diag(S) is diagonal with the entries of the array S on !> its diagonal. The entries of S are the singular values, nonnegative !> and stored in decreasing order. U and VT can be optionally not !> computed, overwritten on A, or computed partially. !> !> A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN. !> U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N. !> !> When CDRVBD is called, a number of matrix (M's and N's) !> and a number of matrix are specified. For each size (M,N) !> and each type of matrix, and for the minimal workspace as well as !> workspace adequate to permit blocking, an M x N matrix will be !> generated and used to test the SVD routines. For each matrix, A will !> be factored as A = U diag(S) VT and the following 12 tests computed: !> !> Test for CGESVD: !> !> (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (2) | I - U'U | / ( M ulp ) !> !> (3) | I - VT VT' | / ( N ulp ) !> !> (4) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (5) | U - Upartial | / ( M ulp ) where Upartial is a partially !> computed U. !> !> (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially !> computed VT. !> !> (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the !> vector of singular values from the partial SVD !> !> Test for CGESDD: !> !> (8) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (9) | I - U'U | / ( M ulp ) !> !> (10) | I - VT VT' | / ( N ulp ) !> !> (11) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (12) | U - Upartial | / ( M ulp ) where Upartial is a partially !> computed U. !> !> (13) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially !> computed VT. !> !> (14) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the !> vector of singular values from the partial SVD !> !> Test for CGESVDQ: !> !> (36) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (37) | I - U'U | / ( M ulp ) !> !> (38) | I - VT VT' | / ( N ulp ) !> !> (39) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> Test for CGESVJ: !> !> (15) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (16) | I - U'U | / ( M ulp ) !> !> (17) | I - VT VT' | / ( N ulp ) !> !> (18) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> Test for CGEJSV: !> !> (19) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (20) | I - U'U | / ( M ulp ) !> !> (21) | I - VT VT' | / ( N ulp ) !> !> (22) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> Test for CGESVDX( 'V', 'V', 'A' )/CGESVDX( 'N', 'N', 'A' ) !> !> (23) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) !> !> (24) | I - U'U | / ( M ulp ) !> !> (25) | I - VT VT' | / ( N ulp ) !> !> (26) S contains MNMIN nonnegative values in decreasing order. !> (Return 0 if true, 1/ULP if false.) !> !> (27) | U - Upartial | / ( M ulp ) where Upartial is a partially !> computed U. !> !> (28) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially !> computed VT. !> !> (29) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the !> vector of singular values from the partial SVD !> !> Test for CGESVDX( 'V', 'V', 'I' ) !> !> (30) | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp ) !> !> (31) | I - U'U | / ( M ulp ) !> !> (32) | I - VT VT' | / ( N ulp ) !> !> Test for CGESVDX( 'V', 'V', 'V' ) !> !> (33) | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp ) !> !> (34) | I - U'U | / ( M ulp ) !> !> (35) | I - VT VT' | / ( N ulp ) !> !> The are specified by the arrays MM(1:NSIZES) and !> NN(1:NSIZES); the value of each element pair (MM(j),NN(j)) !> specifies one size. The are specified by a logical array !> DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type !> will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A matrix of the form U D V, where U and V are unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> (4) Same as (3), but multiplied by the underflow-threshold / ULP. !> (5) Same as (3), but multiplied by the overflow-threshold * ULP. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVBD does nothing. It must be at least zero. !> |
| [in] | MM | !> MM is INTEGER array, dimension (NSIZES) !> An array containing the matrix to be used. For !> each j=1,...,NSIZES, if MM(j) is zero, then MM(j) and NN(j) !> will be ignored. The MM(j) values must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the matrix to be used. For !> each j=1,...,NSIZES, if NN(j) is zero, then MM(j) and NN(j) !> will be ignored. The NN(j) values must be at least zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVBD !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrices are in A and B. !> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix !> of type j will be generated. If NTYPES is smaller than the !> maximum number of types defined (PARAMETER MAXTYP), then !> types NTYPES+1 through MAXTYP will not be generated. If !> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through !> DOTYPE(NTYPES) will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVBD to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA,max(NN)) !> Used to hold the matrix whose singular values are to be !> computed. On exit, A contains the last matrix actually !> used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( MM ). !> |
| [out] | U | !> U is COMPLEX array, dimension (LDU,max(MM)) !> Used to hold the computed matrix of right singular vectors. !> On exit, U contains the last such vectors actually computed. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. It must be at !> least 1 and at least max( MM ). !> |
| [out] | VT | !> VT is COMPLEX array, dimension (LDVT,max(NN)) !> Used to hold the computed matrix of left singular vectors. !> On exit, VT contains the last such vectors actually computed. !> |
| [in] | LDVT | !> LDVT is INTEGER !> The leading dimension of VT. It must be at !> least 1 and at least max( NN ). !> |
| [out] | ASAV | !> ASAV is COMPLEX array, dimension (LDA,max(NN)) !> Used to hold a different copy of the matrix whose singular !> values are to be computed. On exit, A contains the last !> matrix actually used. !> |
| [out] | USAV | !> USAV is COMPLEX array, dimension (LDU,max(MM)) !> Used to hold a different copy of the computed matrix of !> right singular vectors. On exit, USAV contains the last such !> vectors actually computed. !> |
| [out] | VTSAV | !> VTSAV is COMPLEX array, dimension (LDVT,max(NN)) !> Used to hold a different copy of the computed matrix of !> left singular vectors. On exit, VTSAV contains the last such !> vectors actually computed. !> |
| [out] | S | !> S is REAL array, dimension (max(min(MM,NN))) !> Contains the computed singular values. !> |
| [out] | SSAV | !> SSAV is REAL array, dimension (max(min(MM,NN))) !> Contains another copy of the computed singular values. !> |
| [out] | E | !> E is REAL array, dimension (max(min(MM,NN))) !> Workspace for CGESVD. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> MAX(3*MIN(M,N)+MAX(M,N)**2,5*MIN(M,N),3*MAX(M,N)) for all !> pairs (M,N)=(MM(j),NN(j)) !> |
| [out] | RWORK | !> RWORK is REAL array, !> dimension ( 5*max(max(MM,NN)) ) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension at least 8*min(M,N) !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some MM(j) < 0 !> -3: Some NN(j) < 0 !> -4: NTYPES < 0 !> -7: THRESH < 0 !> -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). !> -12: LDU < 1 or LDU < MMAX. !> -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ). !> -29: LWORK too small. !> If CLATMS, or CGESVD returns an error code, the !> absolute value of it is returned. !> |
Definition at line 397 of file cdrvbd.f.
| subroutine cdrves | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( lda, * ) | ht, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | wt, | ||
| complex, dimension( ldvs, * ) | vs, | ||
| integer | ldvs, | ||
| real, dimension( 13 ) | result, | ||
| complex, dimension( * ) | work, | ||
| integer | nwork, | ||
| real, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CDRVES
!> !> CDRVES checks the nonsymmetric eigenvalue (Schur form) problem !> driver CGEES. !> !> When CDRVES is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 13 !> tests will be performed: !> !> (1) 0 if T is in Schur form, 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (2) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (no sorting of eigenvalues). !> !> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). !> !> (4) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (5) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (7) 0 if T is in Schur form, 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (8) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (with sorting of eigenvalues). !> !> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (11) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (13) if sorting worked and SDIM is the number of !> eigenvalues which were SELECTed !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is orthogonal and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from (-1,1). !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVES does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVES !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVES to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max( NN ). !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by CGEES. !> |
| [out] | HT | !> HT is COMPLEX array, dimension (LDA, max(NN)) !> Yet another copy of the test matrix A, modified by CGEES. !> |
| [out] | W | !> W is COMPLEX array, dimension (max(NN)) !> The computed eigenvalues of A. !> |
| [out] | WT | !> WT is COMPLEX array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when CGEES only computes a partial !> eigendecomposition, i.e. not Schur vectors !> |
| [out] | VS | !> VS is COMPLEX array, dimension (LDVS, max(NN)) !> VS holds the computed Schur vectors. !> |
| [in] | LDVS | !> LDVS is INTEGER !> Leading dimension of VS. Must be at least max(1,max(NN)). !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (13) !> The values computed by the 13 tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NWORK) !> |
| [in] | NWORK | !> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> 5*NN(j)+2*NN(j)**2 for all j. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (max(NN)) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (max(NN)) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (max(NN)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ). !> -18: NWORK too small. !> If CLATMR, CLATMS, CLATME or CGEES returns an error code, !> the absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Select whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 375 of file cdrves.f.
| subroutine cdrvev | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | w1, | ||
| complex, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| complex, dimension( ldlre, * ) | lre, | ||
| integer | ldlre, | ||
| real, dimension( 7 ) | result, | ||
| complex, dimension( * ) | work, | ||
| integer | nwork, | ||
| real, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | info ) |
CDRVEV
!> !> CDRVEV checks the nonsymmetric eigenvalue problem driver CGEEV. !> !> When CDRVEV is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 7 !> tests will be performed: !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a diagonal matrix with diagonal entries W(j). !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate-transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) W(full) = W(partial) !> !> W(full) denotes the eigenvalues computed when both VR and VL !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and VR, or only W and VL are !> computed. !> !> (6) VR(full) = VR(partial) !> !> VR(full) denotes the right eigenvectors computed when both VR !> and VL are computed, and VR(partial) denotes the result !> when only VR is computed. !> !> (7) VL(full) = VL(partial) !> !> VL(full) denotes the left eigenvectors computed when both VR !> and VL are also computed, and VL(partial) denotes the result !> when only VL is computed. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVEV does nothing. It must be at least zero. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVEV !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVEV to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max(NN). !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by CGEEV. !> |
| [out] | W | !> W is COMPLEX array, dimension (max(NN)) !> The eigenvalues of A. On exit, W are the eigenvalues of !> the matrix in A. !> |
| [out] | W1 | !> W1 is COMPLEX array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when CGEEV only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !> |
| [out] | VL | !> VL is COMPLEX array, dimension (LDVL, max(NN)) !> VL holds the computed left eigenvectors. !> |
| [in] | LDVL | !> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,max(NN)). !> |
| [out] | VR | !> VR is COMPLEX array, dimension (LDVR, max(NN)) !> VR holds the computed right eigenvectors. !> |
| [in] | LDVR | !> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,max(NN)). !> |
| [out] | LRE | !> LRE is COMPLEX array, dimension (LDLRE, max(NN)) !> LRE holds the computed right or left eigenvectors. !> |
| [in] | LDLRE | !> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,max(NN)). !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (7) !> The values computed by the seven tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NWORK) !> |
| [in] | NWORK | !> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> 5*NN(j)+2*NN(j)**2 for all j. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (2*max(NN)) !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (max(NN)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -14: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). !> -16: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). !> -18: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). !> -21: NWORK too small. !> If CLATMR, CLATMS, CLATME or CGEEV returns an error code, !> the absolute value of it is returned. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 387 of file cdrvev.f.
| subroutine cdrvsg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| real, dimension( * ) | d, | ||
| complex, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex, dimension( lda, * ) | ab, | ||
| complex, dimension( ldb, * ) | bb, | ||
| complex, dimension( * ) | ap, | ||
| complex, dimension( * ) | bp, | ||
| complex, dimension( * ) | work, | ||
| integer | nwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CDRVSG
!> !> CDRVSG checks the complex Hermitian generalized eigenproblem !> drivers. !> !> CHEGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> CHEGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem using a divide and conquer algorithm. !> !> CHEGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> CHPGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> CHPGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage using a divide and !> conquer algorithm. !> !> CHPGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> CHBGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> CHBGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem using a divide and conquer !> algorithm. !> !> CHBGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> When CDRVSG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix A of the given type will be !> generated; a random well-conditioned matrix B is also generated !> and the pair (A,B) is used to test the drivers. !> !> For each pair (A,B), the following tests are performed: !> !> (1) CHEGV with ITYPE = 1 and UPLO ='U': !> !> | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> (2) as (1) but calling CHPGV !> (3) as (1) but calling CHBGV !> (4) as (1) but with UPLO = 'L' !> (5) as (4) but calling CHPGV !> (6) as (4) but calling CHBGV !> !> (7) CHEGV with ITYPE = 2 and UPLO ='U': !> !> | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> (8) as (7) but calling CHPGV !> (9) as (7) but with UPLO = 'L' !> (10) as (9) but calling CHPGV !> !> (11) CHEGV with ITYPE = 3 and UPLO ='U': !> !> | B A Z - Z D | / ( |A| |Z| n ulp ) !> !> (12) as (11) but calling CHPGV !> (13) as (11) but with UPLO = 'L' !> (14) as (13) but calling CHPGV !> !> CHEGVD, CHPGVD and CHBGVD performed the same 14 tests. !> !> CHEGVX, CHPGVX and CHBGVX performed the above 14 tests with !> the parameter RANGE = 'A', 'N' and 'I', respectively. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> This type is used for the matrix A which has half-bandwidth KA. !> B is generated as a well-conditioned positive definite matrix !> with half-bandwidth KB (<= KA). !> Currently, the list of possible types for A is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> (16) Same as (8), but with KA = 1 and KB = 1 !> (17) Same as (8), but with KA = 2 and KB = 1 !> (18) Same as (8), but with KA = 2 and KB = 2 !> (19) Same as (8), but with KA = 3 and KB = 1 !> (20) Same as (8), but with KA = 3 and KB = 2 !> (21) Same as (8), but with KA = 3 and KB = 3 !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVSG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVSG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVSG to continue the same random number !> sequence. !> Modified. !> !> THRESH REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> B COMPLEX array, dimension (LDB , max(NN)) !> Used to hold the Hermitian positive definite matrix for !> the generailzed problem. !> On exit, B contains the last matrix actually !> used. !> Modified. !> !> LDB INTEGER !> The leading dimension of B. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D REAL array, dimension (max(NN)) !> The eigenvalues of A. On exit, the eigenvalues in D !> correspond with the matrix in A. !> Modified. !> !> Z COMPLEX array, dimension (LDZ, max(NN)) !> The matrix of eigenvectors. !> Modified. !> !> LDZ INTEGER !> The leading dimension of ZZ. It must be at least 1 and !> at least max( NN ). !> Not modified. !> !> AB COMPLEX array, dimension (LDA, max(NN)) !> Workspace. !> Modified. !> !> BB COMPLEX array, dimension (LDB, max(NN)) !> Workspace. !> Modified. !> !> AP COMPLEX array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> BP COMPLEX array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> WORK COMPLEX array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK INTEGER !> The number of entries in WORK. This must be at least !> 2*N + N**2 where N = max( NN(j), 2 ). !> Not modified. !> !> RWORK REAL array, dimension (LRWORK) !> Workspace. !> Modified. !> !> LRWORK INTEGER !> The number of entries in RWORK. This must be at least !> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where !> N = max( NN(j) ) and lg( N ) = smallest integer k such !> that 2**k >= N . !> Not modified. !> !> IWORK INTEGER array, dimension (LIWORK)) !> Workspace. !> Modified. !> !> LIWORK INTEGER !> The number of entries in IWORK. This must be at least !> 2 + 5*max( NN(j) ). !> Not modified. !> !> RESULT REAL array, dimension (70) !> The values computed by the 70 tests described above. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDZ < 1 or LDZ < NMAX. !> -21: NWORK too small. !> -23: LRWORK too small. !> -25: LIWORK too small. !> If CLATMR, CLATMS, CHEGV, CHPGV, CHBGV, CHEGVD, CHPGVD, !> CHPGVD, CHEGVX, CHPGVX, CHBGVX returns an error code, !> the absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests that have been run !> on this matrix. !> NTESTT The total number of tests for this call. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by SLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 366 of file cdrvsg.f.
| subroutine cdrvsg2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | d2, | ||
| complex, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex, dimension( lda, * ) | ab, | ||
| complex, dimension( ldb, * ) | bb, | ||
| complex, dimension( * ) | ap, | ||
| complex, dimension( * ) | bp, | ||
| complex, dimension( * ) | work, | ||
| integer | nwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CDRVSG2STG
!> !> CDRVSG2STG checks the complex Hermitian generalized eigenproblem !> drivers. !> !> CHEGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> CHEGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem using a divide and conquer algorithm. !> !> CHEGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem. !> !> CHPGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> CHPGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage using a divide and !> conquer algorithm. !> !> CHPGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite generalized !> eigenproblem in packed storage. !> !> CHBGV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> CHBGVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem using a divide and conquer !> algorithm. !> !> CHBGVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian-definite banded !> generalized eigenproblem. !> !> When CDRVSG2STG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix A of the given type will be !> generated; a random well-conditioned matrix B is also generated !> and the pair (A,B) is used to test the drivers. !> !> For each pair (A,B), the following tests are performed: !> !> (1) CHEGV with ITYPE = 1 and UPLO ='U': !> !> | A Z - B Z D | / ( |A| |Z| n ulp ) !> | D - D2 | / ( |D| ulp ) where D is computed by !> CHEGV and D2 is computed by !> CHEGV_2STAGE. This test is !> only performed for DSYGV !> !> (2) as (1) but calling CHPGV !> (3) as (1) but calling CHBGV !> (4) as (1) but with UPLO = 'L' !> (5) as (4) but calling CHPGV !> (6) as (4) but calling CHBGV !> !> (7) CHEGV with ITYPE = 2 and UPLO ='U': !> !> | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> (8) as (7) but calling CHPGV !> (9) as (7) but with UPLO = 'L' !> (10) as (9) but calling CHPGV !> !> (11) CHEGV with ITYPE = 3 and UPLO ='U': !> !> | B A Z - Z D | / ( |A| |Z| n ulp ) !> !> (12) as (11) but calling CHPGV !> (13) as (11) but with UPLO = 'L' !> (14) as (13) but calling CHPGV !> !> CHEGVD, CHPGVD and CHBGVD performed the same 14 tests. !> !> CHEGVX, CHPGVX and CHBGVX performed the above 14 tests with !> the parameter RANGE = 'A', 'N' and 'I', respectively. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> This type is used for the matrix A which has half-bandwidth KA. !> B is generated as a well-conditioned positive definite matrix !> with half-bandwidth KB (<= KA). !> Currently, the list of possible types for A is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Hermitian matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> !> (16) Same as (8), but with KA = 1 and KB = 1 !> (17) Same as (8), but with KA = 2 and KB = 1 !> (18) Same as (8), but with KA = 2 and KB = 2 !> (19) Same as (8), but with KA = 3 and KB = 1 !> (20) Same as (8), but with KA = 3 and KB = 2 !> (21) Same as (8), but with KA = 3 and KB = 3 !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVSG2STG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVSG2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVSG2STG to continue the same random number !> sequence. !> Modified. !> !> THRESH REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> B COMPLEX array, dimension (LDB , max(NN)) !> Used to hold the Hermitian positive definite matrix for !> the generailzed problem. !> On exit, B contains the last matrix actually !> used. !> Modified. !> !> LDB INTEGER !> The leading dimension of B. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D REAL array, dimension (max(NN)) !> The eigenvalues of A. On exit, the eigenvalues in D !> correspond with the matrix in A. !> Modified. !> !> Z COMPLEX array, dimension (LDZ, max(NN)) !> The matrix of eigenvectors. !> Modified. !> !> LDZ INTEGER !> The leading dimension of ZZ. It must be at least 1 and !> at least max( NN ). !> Not modified. !> !> AB COMPLEX array, dimension (LDA, max(NN)) !> Workspace. !> Modified. !> !> BB COMPLEX array, dimension (LDB, max(NN)) !> Workspace. !> Modified. !> !> AP COMPLEX array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> BP COMPLEX array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> WORK COMPLEX array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK INTEGER !> The number of entries in WORK. This must be at least !> 2*N + N**2 where N = max( NN(j), 2 ). !> Not modified. !> !> RWORK REAL array, dimension (LRWORK) !> Workspace. !> Modified. !> !> LRWORK INTEGER !> The number of entries in RWORK. This must be at least !> max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where !> N = max( NN(j) ) and lg( N ) = smallest integer k such !> that 2**k >= N . !> Not modified. !> !> IWORK INTEGER array, dimension (LIWORK)) !> Workspace. !> Modified. !> !> LIWORK INTEGER !> The number of entries in IWORK. This must be at least !> 2 + 5*max( NN(j) ). !> Not modified. !> !> RESULT REAL array, dimension (70) !> The values computed by the 70 tests described above. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDZ < 1 or LDZ < NMAX. !> -21: NWORK too small. !> -23: LRWORK too small. !> -25: LIWORK too small. !> If CLATMR, CLATMS, CHEGV, CHPGV, CHBGV, CHEGVD, CHPGVD, !> CHPGVD, CHEGVX, CHPGVX, CHBGVX returns an error code, !> the absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests that have been run !> on this matrix. !> NTESTT The total number of tests for this call. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by SLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 372 of file cdrvsg2stg.f.
| subroutine cdrvst | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | d1, | ||
| real, dimension( * ) | d2, | ||
| real, dimension( * ) | d3, | ||
| real, dimension( * ) | wa1, | ||
| real, dimension( * ) | wa2, | ||
| real, dimension( * ) | wa3, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldu, * ) | v, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( ldu, * ) | z, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CDRVST
!> !> CDRVST checks the Hermitian eigenvalue problem drivers. !> !> CHEEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix, !> using a divide-and-conquer algorithm. !> !> CHEEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> CHEEVR computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix !> using the Relatively Robust Representation where it can. !> !> CHPEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage, using a divide-and-conquer algorithm. !> !> CHPEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> CHBEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix, !> using a divide-and-conquer algorithm. !> !> CHBEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> CHEEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> CHPEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> CHBEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> When CDRVST is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the appropriate drivers. For each matrix and each !> driver routine called, the following tests will be performed: !> !> (1) | A - Z D Z' | / ( |A| n ulp ) !> !> (2) | I - Z Z' | / ( n ulp ) !> !> (3) | D1 - D2 | / ( |D1| ulp ) !> !> where Z is the matrix of eigenvectors returned when the !> eigenvector option is given and D1 and D2 are the eigenvalues !> returned with and without the eigenvector option. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Symmetric matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> (16) A band matrix with half bandwidth randomly chosen between !> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP !> with random signs. !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVST does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVST !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVST to continue the same random number !> sequence. !> Modified. !> !> THRESH REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D1 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by CSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> Modified. !> !> D2 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by CSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> Modified. !> !> D3 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by SSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> Modified. !> !> WA1 REAL array, dimension !> !> WA2 REAL array, dimension !> !> WA3 REAL array, dimension !> !> U COMPLEX array, dimension (LDU, max(NN)) !> The unitary matrix computed by CHETRD + CUNGC3. !> Modified. !> !> LDU INTEGER !> The leading dimension of U, Z, and V. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> V COMPLEX array, dimension (LDU, max(NN)) !> The Housholder vectors computed by CHETRD in reducing A to !> tridiagonal form. !> Modified. !> !> TAU COMPLEX array, dimension (max(NN)) !> The Householder factors computed by CHETRD in reducing A !> to tridiagonal form. !> Modified. !> !> Z COMPLEX array, dimension (LDU, max(NN)) !> The unitary matrix of eigenvectors computed by CHEEVD, !> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX. !> Modified. !> !> WORK - COMPLEX array of dimension ( LWORK ) !> Workspace. !> Modified. !> !> LWORK - INTEGER !> The number of entries in WORK. This must be at least !> 2*max( NN(j), 2 )**2. !> Not modified. !> !> RWORK REAL array, dimension (3*max(NN)) !> Workspace. !> Modified. !> !> LRWORK - INTEGER !> The number of entries in RWORK. !> !> IWORK INTEGER array, dimension (6*max(NN)) !> Workspace. !> Modified. !> !> LIWORK - INTEGER !> The number of entries in IWORK. !> !> RESULT REAL array, dimension (??) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDU < 1 or LDU < NMAX. !> -21: LWORK too small. !> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF, !> or SORMC2 returns an error code, the !> absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by SLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 334 of file cdrvst.f.
| subroutine cdrvst2stg | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | d1, | ||
| real, dimension( * ) | d2, | ||
| real, dimension( * ) | d3, | ||
| real, dimension( * ) | wa1, | ||
| real, dimension( * ) | wa2, | ||
| real, dimension( * ) | wa3, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldu, * ) | v, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( ldu, * ) | z, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | lrwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer | liwork, | ||
| real, dimension( * ) | result, | ||
| integer | info ) |
CDRVST2STG
!> !> CDRVST2STG checks the Hermitian eigenvalue problem drivers. !> !> CHEEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix, !> using a divide-and-conquer algorithm. !> !> CHEEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> CHEEVR computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix !> using the Relatively Robust Representation where it can. !> !> CHPEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage, using a divide-and-conquer algorithm. !> !> CHPEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> CHBEVD computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix, !> using a divide-and-conquer algorithm. !> !> CHBEVX computes selected eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> CHEEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix. !> !> CHPEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian matrix in packed !> storage. !> !> CHBEV computes all eigenvalues and, optionally, !> eigenvectors of a complex Hermitian band matrix. !> !> When CDRVST2STG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the appropriate drivers. For each matrix and each !> driver routine called, the following tests will be performed: !> !> (1) | A - Z D Z' | / ( |A| n ulp ) !> !> (2) | I - Z Z' | / ( n ulp ) !> !> (3) | D1 - D2 | / ( |D1| ulp ) !> !> where Z is the matrix of eigenvectors returned when the !> eigenvector option is given and D1 and D2 are the eigenvalues !> returned with and without the eigenvector option. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is unitary and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is unitary and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is unitary and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) Symmetric matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold ) !> (16) A band matrix with half bandwidth randomly chosen between !> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP !> with random signs. !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> CDRVST2STG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, CDRVST2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVST2STG to continue the same random number !> sequence. !> Modified. !> !> THRESH REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A COMPLEX array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D1 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by CSTEQR simlutaneously !> with Z. On exit, the eigenvalues in D1 correspond with the !> matrix in A. !> Modified. !> !> D2 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by CSTEQR if Z is not !> computed. On exit, the eigenvalues in D2 correspond with !> the matrix in A. !> Modified. !> !> D3 REAL array, dimension (max(NN)) !> The eigenvalues of A, as computed by SSTERF. On exit, the !> eigenvalues in D3 correspond with the matrix in A. !> Modified. !> !> WA1 REAL array, dimension !> !> WA2 REAL array, dimension !> !> WA3 REAL array, dimension !> !> U COMPLEX array, dimension (LDU, max(NN)) !> The unitary matrix computed by CHETRD + CUNGC3. !> Modified. !> !> LDU INTEGER !> The leading dimension of U, Z, and V. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> V COMPLEX array, dimension (LDU, max(NN)) !> The Housholder vectors computed by CHETRD in reducing A to !> tridiagonal form. !> Modified. !> !> TAU COMPLEX array, dimension (max(NN)) !> The Householder factors computed by CHETRD in reducing A !> to tridiagonal form. !> Modified. !> !> Z COMPLEX array, dimension (LDU, max(NN)) !> The unitary matrix of eigenvectors computed by CHEEVD, !> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX. !> Modified. !> !> WORK - COMPLEX array of dimension ( LWORK ) !> Workspace. !> Modified. !> !> LWORK - INTEGER !> The number of entries in WORK. This must be at least !> 2*max( NN(j), 2 )**2. !> Not modified. !> !> RWORK REAL array, dimension (3*max(NN)) !> Workspace. !> Modified. !> !> LRWORK - INTEGER !> The number of entries in RWORK. !> !> IWORK INTEGER array, dimension (6*max(NN)) !> Workspace. !> Modified. !> !> LIWORK - INTEGER !> The number of entries in IWORK. !> !> RESULT REAL array, dimension (??) !> The values computed by the tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDU < 1 or LDU < NMAX. !> -21: LWORK too small. !> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF, !> or SORMC2 returns an error code, the !> absolute value of it is returned. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests performed, or which can !> be performed so far, for the current matrix. !> NTESTT The total number of tests performed so far. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by SLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 334 of file cdrvst2stg.f.
| subroutine cdrvsx | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | niunit, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( lda, * ) | ht, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | wt, | ||
| complex, dimension( * ) | wtmp, | ||
| complex, dimension( ldvs, * ) | vs, | ||
| integer | ldvs, | ||
| complex, dimension( ldvs, * ) | vs1, | ||
| real, dimension( 17 ) | result, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CDRVSX
!> !> CDRVSX checks the nonsymmetric eigenvalue (Schur form) problem !> expert driver CGEESX. !> !> CDRVSX uses both test matrices generated randomly depending on !> data supplied in the calling sequence, as well as on data !> read from an input file and including precomputed condition !> numbers to which it compares the ones it computes. !> !> When CDRVSX is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 15 !> tests will be performed: !> !> (1) 0 if T is in Schur form, 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (2) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (no sorting of eigenvalues). !> !> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). !> !> (4) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (5) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (7) 0 if T is in Schur form, 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (8) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (with sorting of eigenvalues). !> !> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) 0 if W are eigenvalues of T !> 1/ulp otherwise !> If workspace sufficient, also compare W with and !> without reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (11) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare T with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare VS with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (13) if sorting worked and SDIM is the number of !> eigenvalues which were SELECTed !> If workspace sufficient, also compare SDIM with and !> without reciprocal condition numbers !> !> (14) if RCONDE the same no matter if VS and/or RCONDV computed !> !> (15) if RCONDV the same no matter if VS and/or RCONDE computed !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is orthogonal and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from (-1,1). !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !> !> In addition, an input file will be read from logical unit number !> NIUNIT. The file contains matrices along with precomputed !> eigenvalues and reciprocal condition numbers for the eigenvalue !> average and right invariant subspace. For these matrices, in !> addition to tests (1) to (15) we will compute the following two !> tests: !> !> (16) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal average eigenvalue condition number !> computed by CGEESX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !> !> (17) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right invariant subspace condition !> number computed by CGEESX and RCDVIN (the precomputed true !> value) is supplied as input. cond(RCONDV) is the condition !> number of RCONDV, and takes errors in computing RCONDV into !> account, so that the resulting quantity should be O(ULP). !> cond(RCONDV) is essentially given by norm(A)/RCONDE. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. NSIZES must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIUNIT will be !> tested. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. NTYPES must be at least !> zero. If it is zero, no randomly generated test matrices !> are tested, but and test matrices read from NIUNIT will be !> tested. If it is MAXTYP+1 and NSIZES is 1, then an !> additional type, MAXTYP+1 is defined, which is to use !> whatever matrix is in A. This is only useful if !> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVSX to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NIUNIT | !> NIUNIT is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max( NN ). !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by CGEESX. !> |
| [out] | HT | !> HT is COMPLEX array, dimension (LDA, max(NN)) !> Yet another copy of the test matrix A, modified by CGEESX. !> |
| [out] | W | !> W is COMPLEX array, dimension (max(NN)) !> The computed eigenvalues of A. !> |
| [out] | WT | !> WT is COMPLEX array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when CGEESX only computes a partial !> eigendecomposition, i.e. not Schur vectors !> |
| [out] | WTMP | !> WTMP is COMPLEX array, dimension (max(NN)) !> More temporary storage for eigenvalues. !> |
| [out] | VS | !> VS is COMPLEX array, dimension (LDVS, max(NN)) !> VS holds the computed Schur vectors. !> |
| [in] | LDVS | !> LDVS is INTEGER !> Leading dimension of VS. Must be at least max(1,max(NN)). !> |
| [out] | VS1 | !> VS1 is COMPLEX array, dimension (LDVS, max(NN)) !> VS1 holds another copy of the computed Schur vectors. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (17) !> The values computed by the 17 tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> max(1,2*NN(j)**2) for all j. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (max(NN)) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (max(NN)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, successful exit. !> <0, input parameter -INFO is incorrect !> >0, CLATMR, CLATMS, CLATME or CGET24 returned an error !> code and INFO is its absolute value !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 431 of file cdrvsx.f.
| subroutine cdrvvx | ( | integer | nsizes, |
| integer, dimension( * ) | nn, | ||
| integer | ntypes, | ||
| logical, dimension( * ) | dotype, | ||
| integer, dimension( 4 ) | iseed, | ||
| real | thresh, | ||
| integer | niunit, | ||
| integer | nounit, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | w1, | ||
| complex, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| complex, dimension( ldlre, * ) | lre, | ||
| integer | ldlre, | ||
| real, dimension( * ) | rcondv, | ||
| real, dimension( * ) | rcndv1, | ||
| real, dimension( * ) | rcdvin, | ||
| real, dimension( * ) | rconde, | ||
| real, dimension( * ) | rcnde1, | ||
| real, dimension( * ) | rcdein, | ||
| real, dimension( * ) | scale, | ||
| real, dimension( * ) | scale1, | ||
| real, dimension( 11 ) | result, | ||
| complex, dimension( * ) | work, | ||
| integer | nwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | info ) |
CDRVVX
!> !> CDRVVX checks the nonsymmetric eigenvalue problem expert driver !> CGEEVX. !> !> CDRVVX uses both test matrices generated randomly depending on !> data supplied in the calling sequence, as well as on data !> read from an input file and including precomputed condition !> numbers to which it compares the ones it computes. !> !> When CDRVVX is called, a number of matrix () and a !> number of matrix are specified in the calling sequence. !> For each size () and each type of matrix, one matrix will be !> generated and used to test the nonsymmetric eigenroutines. For !> each matrix, 9 tests will be performed: !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a diagonal matrix with diagonal entries W(j). !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) W(full) = W(partial) !> !> W(full) denotes the eigenvalues computed when VR, VL, RCONDV !> and RCONDE are also computed, and W(partial) denotes the !> eigenvalues computed when only some of VR, VL, RCONDV, and !> RCONDE are computed. !> !> (6) VR(full) = VR(partial) !> !> VR(full) denotes the right eigenvectors computed when VL, RCONDV !> and RCONDE are computed, and VR(partial) denotes the result !> when only some of VL and RCONDV are computed. !> !> (7) VL(full) = VL(partial) !> !> VL(full) denotes the left eigenvectors computed when VR, RCONDV !> and RCONDE are computed, and VL(partial) denotes the result !> when only some of VR and RCONDV are computed. !> !> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = !> SCALE, ILO, IHI, ABNRM (partial) !> 1/ulp otherwise !> !> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. !> (full) is when VR, VL, RCONDE and RCONDV are also computed, and !> (partial) is when some are not computed. !> !> (9) RCONDV(full) = RCONDV(partial) !> !> RCONDV(full) denotes the reciprocal condition numbers of the !> right eigenvectors computed when VR, VL and RCONDE are also !> computed. RCONDV(partial) denotes the reciprocal condition !> numbers when only some of VR, VL and RCONDE are computed. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !> !> In addition, an input file will be read from logical unit number !> NIUNIT. The file contains matrices along with precomputed !> eigenvalues and reciprocal condition numbers for the eigenvalues !> and right eigenvectors. For these matrices, in addition to tests !> (1) to (9) we will compute the following two tests: !> !> (10) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right eigenvector condition number !> computed by CGEEVX and RCDVIN (the precomputed true value) !> is supplied as input. cond(RCONDV) is the condition number of !> RCONDV, and takes errors in computing RCONDV into account, so !> that the resulting quantity should be O(ULP). cond(RCONDV) is !> essentially given by norm(A)/RCONDE. !> !> (11) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal eigenvalue condition number !> computed by CGEEVX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !>
| [in] | NSIZES | !> NSIZES is INTEGER !> The number of sizes of matrices to use. NSIZES must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIUNIT will be !> tested. !> |
| [in] | NN | !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> |
| [in] | NTYPES | !> NTYPES is INTEGER !> The number of elements in DOTYPE. NTYPES must be at least !> zero. If it is zero, no randomly generated test matrices !> are tested, but and test matrices read from NIUNIT will be !> tested. If it is MAXTYP+1 and NSIZES is 1, then an !> additional type, MAXTYP+1 is defined, which is to use !> whatever matrix is in A. This is only useful if !> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . !> |
| [in] | DOTYPE | !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to CDRVVX to continue the same random number !> sequence. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NIUNIT | !> NIUNIT is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, max(NN,12)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least max( NN, 12 ). (12 is the !> dimension of the largest matrix on the precomputed !> input file.) !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA, max(NN,12)) !> Another copy of the test matrix A, modified by CGEEVX. !> |
| [out] | W | !> W is COMPLEX array, dimension (max(NN,12)) !> Contains the eigenvalues of A. !> |
| [out] | W1 | !> W1 is COMPLEX array, dimension (max(NN,12)) !> Like W, this array contains the eigenvalues of A, !> but those computed when CGEEVX only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !> |
| [out] | VL | !> VL is COMPLEX array, dimension (LDVL, max(NN,12)) !> VL holds the computed left eigenvectors. !> |
| [in] | LDVL | !> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,max(NN,12)). !> |
| [out] | VR | !> VR is COMPLEX array, dimension (LDVR, max(NN,12)) !> VR holds the computed right eigenvectors. !> |
| [in] | LDVR | !> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,max(NN,12)). !> |
| [out] | LRE | !> LRE is COMPLEX array, dimension (LDLRE, max(NN,12)) !> LRE holds the computed right or left eigenvectors. !> |
| [in] | LDLRE | !> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,max(NN,12)) !> |
| [out] | RCONDV | !> RCONDV is REAL array, dimension (N) !> RCONDV holds the computed reciprocal condition numbers !> for eigenvectors. !> |
| [out] | RCNDV1 | !> RCNDV1 is REAL array, dimension (N) !> RCNDV1 holds more computed reciprocal condition numbers !> for eigenvectors. !> |
| [in] | RCDVIN | !> RCDVIN is REAL array, dimension (N) !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition numbers for eigenvectors to be compared with !> RCONDV. !> |
| [out] | RCONDE | !> RCONDE is REAL array, dimension (N) !> RCONDE holds the computed reciprocal condition numbers !> for eigenvalues. !> |
| [out] | RCNDE1 | !> RCNDE1 is REAL array, dimension (N) !> RCNDE1 holds more computed reciprocal condition numbers !> for eigenvalues. !> |
| [in] | RCDEIN | !> RCDEIN is REAL array, dimension (N) !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition numbers for eigenvalues to be compared with !> RCONDE. !> |
| [out] | SCALE | !> SCALE is REAL array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | SCALE1 | !> SCALE1 is REAL array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (11) !> The values computed by the seven tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (NWORK) !> |
| [in] | NWORK | !> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = !> max( 360 ,6*NN(j)+2*NN(j)**2) for all j. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (2*max(NN,12)) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, then successful exit. !> If <0, then input parameter -INFO is incorrect. !> If >0, CLATMR, CLATMS, CLATME or CGET23 returned an error !> code, and INFO is its absolute value. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN or 12. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !> |
Definition at line 491 of file cdrvvx.f.
| subroutine cerrbd | ( | character*3 | path, |
| integer | nunit ) |
CERRBD
!> !> CERRBD tests the error exits for CGEBRD, CUNGBR, CUNMBR, and CBDSQR. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 53 of file cerrbd.f.
| subroutine cerrec | ( | character*3 | path, |
| integer | nunit ) |
CERREC
!> !> CERREC tests the error exits for the routines for eigen- condition !> estimation for REAL matrices: !> CTRSYL, CTREXC, CTRSNA and CTRSEN. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 55 of file cerrec.f.
| subroutine cerred | ( | character*3 | path, |
| integer | nunit ) |
CERRED
!> !> CERRED tests the error exits for the eigenvalue driver routines for !> REAL matrices: !> !> PATH driver description !> ---- ------ ----------- !> CEV CGEEV find eigenvalues/eigenvectors for nonsymmetric A !> CES CGEES find eigenvalues/Schur form for nonsymmetric A !> CVX CGEEVX CGEEV + balancing and condition estimation !> CSX CGEESX CGEES + balancing and condition estimation !> CBD CGESVD compute SVD of an M-by-N matrix A !> CGESDD compute SVD of an M-by-N matrix A(by divide and !> conquer) !> CGEJSV compute SVD of an M-by-N matrix A where M >= N !> CGESVDX compute SVD of an M-by-N matrix A(by bisection !> and inverse iteration) !> CGESVDQ compute SVD of an M-by-N matrix A(with a !> QR-Preconditioned ) !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 69 of file cerred.f.
| subroutine cerrgg | ( | character*3 | path, |
| integer | nunit ) |
CERRGG
!> !> CERRGG tests the error exits for CGGES, CGGESX, CGGEV, CGGEVX, !> CGGES3, CGGEV3, CGGGLM, CGGHRD, CGGLSE, CGGQRF, CGGRQF, !> CGGSVD3, CGGSVP3, CHGEQZ, CTGEVC, CTGEXC, CTGSEN, CTGSJA, !> CTGSNA, CTGSYL, and CUNCSD. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 56 of file cerrgg.f.
| subroutine cerrhs | ( | character*3 | path, |
| integer | nunit ) |
CERRHS
!> !> CERRHS tests the error exits for CGEBAK, CGEBAL, CGEHRD, CUNGHR, !> CUNMHR, CHSEQR, CHSEIN, and CTREVC. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 54 of file cerrhs.f.
| subroutine cerrst | ( | character*3 | path, |
| integer | nunit ) |
CERRST
!> !> CERRST tests the error exits for CHETRD, CUNGTR, CUNMTR, CHPTRD, !> CUNGTR, CUPMTR, CSTEQR, CSTEIN, CPTEQR, CHBTRD, !> CHEEV, CHEEVX, CHEEVD, CHBEV, CHBEVX, CHBEVD, !> CHPEV, CHPEVX, CHPEVD, and CSTEDC. !> CHEEVD_2STAGE, CHEEVR_2STAGE, CHEEVX_2STAGE, !> CHEEV_2STAGE, CHBEV_2STAGE, CHBEVD_2STAGE, !> CHBEVX_2STAGE, CHETRD_2STAGE, CHETRD_HE2HB, !> CHETRD_HB2ST !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The LAPACK path name for the routines to be tested. !> |
| [in] | NUNIT | !> NUNIT is INTEGER !> The unit number for output. !> |
Definition at line 60 of file cerrst.f.
| subroutine cget02 | ( | character | trans, |
| integer | m, | ||
| integer | n, | ||
| integer | nrhs, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| real, dimension( * ) | rwork, | ||
| real | resid ) |
CGET02
!> !> CGET02 computes the residual for a solution of a system of linear !> equations op(A)*X = B: !> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ), !> where op(A) = A, A**T, or A**H, depending on TRANS, and EPS is the !> machine epsilon. !>
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of columns of B, the matrix of right hand sides. !> NRHS >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The original M x N matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | X | !> X is COMPLEX array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. If TRANS = 'N', !> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). !> |
| [in,out] | B | !> B is COMPLEX array, dimension (LDB,NRHS) !> On entry, the right hand side vectors for the system of !> linear equations. !> On exit, B is overwritten with the difference B - A*X. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. IF TRANS = 'N', !> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
| [out] | RESID | !> RESID is REAL !> The maximum over the number of right hand sides of !> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ). !> |
Definition at line 132 of file cget02.f.
| subroutine cget10 | ( | integer | m, |
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real | result ) |
CGET10
!> !> CGET10 compares two matrices A and B and computes the ratio !> RESULT = norm( A - B ) / ( norm(A) * M * EPS ) !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrices A and B. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The m by n matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,N) !> The m by n matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (M) !> |
| [out] | RWORK | !> RWORK is COMPLEX array, dimension (M) !> |
| [out] | RESULT | !> RESULT is REAL !> RESULT = norm( A - B ) / ( norm(A) * M * EPS ) !> |
Definition at line 98 of file cget10.f.
| subroutine cget22 | ( | character | transa, |
| character | transe, | ||
| character | transw, | ||
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lde, * ) | e, | ||
| integer | lde, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CGET22
!> !> CGET22 does an eigenvector check. !> !> The basic test is: !> !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> !> using the 1-norm. It also tests the normalization of E: !> !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> !> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a !> vector. The max-norm of a complex n-vector x in this case is the !> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n. !>
| [in] | TRANSA | !> TRANSA is CHARACTER*1 !> Specifies whether or not A is transposed. !> = 'N': No transpose !> = 'T': Transpose !> = 'C': Conjugate transpose !> |
| [in] | TRANSE | !> TRANSE is CHARACTER*1 !> Specifies whether or not E is transposed. !> = 'N': No transpose, eigenvectors are in columns of E !> = 'T': Transpose, eigenvectors are in rows of E !> = 'C': Conjugate transpose, eigenvectors are in rows of E !> |
| [in] | TRANSW | !> TRANSW is CHARACTER*1 !> Specifies whether or not W is transposed. !> = 'N': No transpose !> = 'T': Transpose, same as TRANSW = 'N' !> = 'C': Conjugate transpose, use -WI(j) instead of WI(j) !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The matrix whose eigenvectors are in E. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | E | !> E is COMPLEX array, dimension (LDE,N) !> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors !> are stored in the columns of E, if TRANSE = 'T' or 'C', the !> eigenvectors are stored in the rows of E. !> |
| [in] | LDE | !> LDE is INTEGER !> The leading dimension of the array E. LDE >= max(1,N). !> |
| [in] | W | !> W is COMPLEX array, dimension (N) !> The eigenvalues of A. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N*N) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> |
Definition at line 142 of file cget22.f.
| subroutine cget23 | ( | logical | comp, |
| integer | isrt, | ||
| character | balanc, | ||
| integer | jtype, | ||
| real | thresh, | ||
| integer, dimension( 4 ) | iseed, | ||
| integer | nounit, | ||
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | w1, | ||
| complex, dimension( ldvl, * ) | vl, | ||
| integer | ldvl, | ||
| complex, dimension( ldvr, * ) | vr, | ||
| integer | ldvr, | ||
| complex, dimension( ldlre, * ) | lre, | ||
| integer | ldlre, | ||
| real, dimension( * ) | rcondv, | ||
| real, dimension( * ) | rcndv1, | ||
| real, dimension( * ) | rcdvin, | ||
| real, dimension( * ) | rconde, | ||
| real, dimension( * ) | rcnde1, | ||
| real, dimension( * ) | rcdein, | ||
| real, dimension( * ) | scale, | ||
| real, dimension( * ) | scale1, | ||
| real, dimension( 11 ) | result, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| integer | info ) |
CGET23
!> !> CGET23 checks the nonsymmetric eigenvalue problem driver CGEEVX. !> If COMP = .FALSE., the first 8 of the following tests will be !> performed on the input matrix A, and also test 9 if LWORK is !> sufficiently large. !> if COMP is .TRUE. all 11 tests will be performed. !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a diagonal matrix with diagonal entries W(j). !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) 0 if W(full) = W(partial), 1/ulp otherwise !> !> W(full) denotes the eigenvalues computed when VR, VL, RCONDV !> and RCONDE are also computed, and W(partial) denotes the !> eigenvalues computed when only some of VR, VL, RCONDV, and !> RCONDE are computed. !> !> (6) 0 if VR(full) = VR(partial), 1/ulp otherwise !> !> VR(full) denotes the right eigenvectors computed when VL, RCONDV !> and RCONDE are computed, and VR(partial) denotes the result !> when only some of VL and RCONDV are computed. !> !> (7) 0 if VL(full) = VL(partial), 1/ulp otherwise !> !> VL(full) denotes the left eigenvectors computed when VR, RCONDV !> and RCONDE are computed, and VL(partial) denotes the result !> when only some of VR and RCONDV are computed. !> !> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = !> SCALE, ILO, IHI, ABNRM (partial) !> 1/ulp otherwise !> !> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. !> (full) is when VR, VL, RCONDE and RCONDV are also computed, and !> (partial) is when some are not computed. !> !> (9) 0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise !> !> RCONDV(full) denotes the reciprocal condition numbers of the !> right eigenvectors computed when VR, VL and RCONDE are also !> computed. RCONDV(partial) denotes the reciprocal condition !> numbers when only some of VR, VL and RCONDE are computed. !> !> (10) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right eigenvector condition number !> computed by CGEEVX and RCDVIN (the precomputed true value) !> is supplied as input. cond(RCONDV) is the condition number of !> RCONDV, and takes errors in computing RCONDV into account, so !> that the resulting quantity should be O(ULP). cond(RCONDV) is !> essentially given by norm(A)/RCONDE. !> !> (11) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal eigenvalue condition number !> computed by CGEEVX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !>
| [in] | COMP | !> COMP is LOGICAL !> COMP describes which input tests to perform: !> = .FALSE. if the computed condition numbers are not to !> be tested against RCDVIN and RCDEIN !> = .TRUE. if they are to be compared !> |
| [in] | ISRT | !> ISRT is INTEGER !> If COMP = .TRUE., ISRT indicates in how the eigenvalues !> corresponding to values in RCDVIN and RCDEIN are ordered: !> = 0 means the eigenvalues are sorted by !> increasing real part !> = 1 means the eigenvalues are sorted by !> increasing imaginary part !> If COMP = .FALSE., ISRT is not referenced. !> |
| [in] | BALANC | !> BALANC is CHARACTER !> Describes the balancing option to be tested. !> = 'N' for no permuting or diagonal scaling !> = 'P' for permuting but no diagonal scaling !> = 'S' for no permuting but diagonal scaling !> = 'B' for permuting and diagonal scaling !> |
| [in] | JTYPE | !> JTYPE is INTEGER !> Type of input matrix. Used to label output if error occurs. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | ISEED | !> ISEED is INTEGER array, dimension (4) !> If COMP = .FALSE., the random number generator seed !> used to produce matrix. !> If COMP = .TRUE., ISEED(1) = the number of the example. !> Used to label output if error occurs. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [in] | N | !> N is INTEGER !> The dimension of A. N must be at least 0. !> |
| [in,out] | A | !> A is COMPLEX array, dimension (LDA,N) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least N. !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA,N) !> Another copy of the test matrix A, modified by CGEEVX. !> |
| [out] | W | !> W is COMPLEX array, dimension (N) !> Contains the eigenvalues of A. !> |
| [out] | W1 | !> W1 is COMPLEX array, dimension (N) !> Like W, this array contains the eigenvalues of A, !> but those computed when CGEEVX only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !> |
| [out] | VL | !> VL is COMPLEX array, dimension (LDVL,N) !> VL holds the computed left eigenvectors. !> |
| [in] | LDVL | !> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,N). !> |
| [out] | VR | !> VR is COMPLEX array, dimension (LDVR,N) !> VR holds the computed right eigenvectors. !> |
| [in] | LDVR | !> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,N). !> |
| [out] | LRE | !> LRE is COMPLEX array, dimension (LDLRE,N) !> LRE holds the computed right or left eigenvectors. !> |
| [in] | LDLRE | !> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,N). !> |
| [out] | RCONDV | !> RCONDV is REAL array, dimension (N) !> RCONDV holds the computed reciprocal condition numbers !> for eigenvectors. !> |
| [out] | RCNDV1 | !> RCNDV1 is REAL array, dimension (N) !> RCNDV1 holds more computed reciprocal condition numbers !> for eigenvectors. !> |
| [in] | RCDVIN | !> RCDVIN is REAL array, dimension (N) !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition numbers for eigenvectors to be compared with !> RCONDV. !> |
| [out] | RCONDE | !> RCONDE is REAL array, dimension (N) !> RCONDE holds the computed reciprocal condition numbers !> for eigenvalues. !> |
| [out] | RCNDE1 | !> RCNDE1 is REAL array, dimension (N) !> RCNDE1 holds more computed reciprocal condition numbers !> for eigenvalues. !> |
| [in] | RCDEIN | !> RCDEIN is REAL array, dimension (N) !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition numbers for eigenvalues to be compared with !> RCONDE. !> |
| [out] | SCALE | !> SCALE is REAL array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | SCALE1 | !> SCALE1 is REAL array, dimension (N) !> Holds information describing balancing of matrix. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (11) !> The values computed by the 11 tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK. This must be at least !> 2*N, and 2*N+N**2 if tests 9, 10 or 11 are to be performed. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (2*N) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, successful exit. !> If <0, input parameter -INFO had an incorrect value. !> If >0, CGEEVX returned an error code, the absolute !> value of which is returned. !> |
Definition at line 363 of file cget23.f.
| subroutine cget24 | ( | logical | comp, |
| integer | jtype, | ||
| real | thresh, | ||
| integer, dimension( 4 ) | iseed, | ||
| integer | nounit, | ||
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( lda, * ) | h, | ||
| complex, dimension( lda, * ) | ht, | ||
| complex, dimension( * ) | w, | ||
| complex, dimension( * ) | wt, | ||
| complex, dimension( * ) | wtmp, | ||
| complex, dimension( ldvs, * ) | vs, | ||
| integer | ldvs, | ||
| complex, dimension( ldvs, * ) | vs1, | ||
| real | rcdein, | ||
| real | rcdvin, | ||
| integer | nslct, | ||
| integer, dimension( * ) | islct, | ||
| integer | isrt, | ||
| real, dimension( 17 ) | result, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| logical, dimension( * ) | bwork, | ||
| integer | info ) |
CGET24
!> !> CGET24 checks the nonsymmetric eigenvalue (Schur form) problem !> expert driver CGEESX. !> !> If COMP = .FALSE., the first 13 of the following tests will be !> be performed on the input matrix A, and also tests 14 and 15 !> if LWORK is sufficiently large. !> If COMP = .TRUE., all 17 test will be performed. !> !> (1) 0 if T is in Schur form, 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (2) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (no sorting of eigenvalues). !> !> (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). !> !> (4) 0 if W are eigenvalues of T !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (5) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> (no sorting of eigenvalues) !> !> (7) 0 if T is in Schur form, 1/ulp otherwise !> (with sorting of eigenvalues) !> !> (8) | A - VS T VS' | / ( n |A| ulp ) !> !> Here VS is the matrix of Schur eigenvectors, and T is in Schur !> form (with sorting of eigenvalues). !> !> (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). !> !> (10) 0 if W are eigenvalues of T !> 1/ulp otherwise !> If workspace sufficient, also compare W with and !> without reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (11) 0 if T(with VS) = T(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare T with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), !> 1/ulp otherwise !> If workspace sufficient, also compare VS with and without !> reciprocal condition numbers !> (with sorting of eigenvalues) !> !> (13) if sorting worked and SDIM is the number of !> eigenvalues which were SELECTed !> If workspace sufficient, also compare SDIM with and !> without reciprocal condition numbers !> !> (14) if RCONDE the same no matter if VS and/or RCONDV computed !> !> (15) if RCONDV the same no matter if VS and/or RCONDE computed !> !> (16) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal average eigenvalue condition number !> computed by CGEESX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !> !> (17) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right invariant subspace condition !> number computed by CGEESX and RCDVIN (the precomputed true !> value) is supplied as input. cond(RCONDV) is the condition !> number of RCONDV, and takes errors in computing RCONDV into !> account, so that the resulting quantity should be O(ULP). !> cond(RCONDV) is essentially given by norm(A)/RCONDE. !>
| [in] | COMP | !> COMP is LOGICAL !> COMP describes which input tests to perform: !> = .FALSE. if the computed condition numbers are not to !> be tested against RCDVIN and RCDEIN !> = .TRUE. if they are to be compared !> |
| [in] | JTYPE | !> JTYPE is INTEGER !> Type of input matrix. Used to label output if error occurs. !> |
| [in] | ISEED | !> ISEED is INTEGER array, dimension (4) !> If COMP = .FALSE., the random number generator seed !> used to produce matrix. !> If COMP = .TRUE., ISEED(1) = the number of the example. !> Used to label output if error occurs. !> |
| [in] | THRESH | !> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> |
| [in] | NOUNIT | !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !> |
| [in] | N | !> N is INTEGER !> The dimension of A. N must be at least 0. !> |
| [in,out] | A | !> A is COMPLEX array, dimension (LDA, N) !> Used to hold the matrix whose eigenvalues are to be !> computed. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A, and H. LDA must be at !> least 1 and at least N. !> |
| [out] | H | !> H is COMPLEX array, dimension (LDA, N) !> Another copy of the test matrix A, modified by CGEESX. !> |
| [out] | HT | !> HT is COMPLEX array, dimension (LDA, N) !> Yet another copy of the test matrix A, modified by CGEESX. !> |
| [out] | W | !> W is COMPLEX array, dimension (N) !> The computed eigenvalues of A. !> |
| [out] | WT | !> WT is COMPLEX array, dimension (N) !> Like W, this array contains the eigenvalues of A, !> but those computed when CGEESX only computes a partial !> eigendecomposition, i.e. not Schur vectors !> |
| [out] | WTMP | !> WTMP is COMPLEX array, dimension (N) !> Like W, this array contains the eigenvalues of A, !> but sorted by increasing real or imaginary part. !> |
| [out] | VS | !> VS is COMPLEX array, dimension (LDVS, N) !> VS holds the computed Schur vectors. !> |
| [in] | LDVS | !> LDVS is INTEGER !> Leading dimension of VS. Must be at least max(1, N). !> |
| [out] | VS1 | !> VS1 is COMPLEX array, dimension (LDVS, N) !> VS1 holds another copy of the computed Schur vectors. !> |
| [in] | RCDEIN | !> RCDEIN is REAL !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition number for the average of selected eigenvalues. !> |
| [in] | RCDVIN | !> RCDVIN is REAL !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition number for the selected right invariant subspace. !> |
| [in] | NSLCT | !> NSLCT is INTEGER !> When COMP = .TRUE. the number of selected eigenvalues !> corresponding to the precomputed values RCDEIN and RCDVIN. !> |
| [in] | ISLCT | !> ISLCT is INTEGER array, dimension (NSLCT) !> When COMP = .TRUE. ISLCT selects the eigenvalues of the !> input matrix corresponding to the precomputed values RCDEIN !> and RCDVIN. For I=1, ... ,NSLCT, if ISLCT(I) = J, then the !> eigenvalue with the J-th largest real or imaginary part is !> selected. The real part is used if ISRT = 0, and the !> imaginary part if ISRT = 1. !> Not referenced if COMP = .FALSE. !> |
| [in] | ISRT | !> ISRT is INTEGER !> When COMP = .TRUE., ISRT describes how ISLCT is used to !> choose a subset of the spectrum. !> Not referenced if COMP = .FALSE. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (17) !> The values computed by the 17 tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (2*N*N) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The number of entries in WORK to be passed to CGEESX. This !> must be at least 2*N, and N*(N+1)/2 if tests 14--16 are to !> be performed. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | BWORK | !> BWORK is LOGICAL array, dimension (N) !> |
| [out] | INFO | !> INFO is INTEGER !> If 0, successful exit. !> If <0, input parameter -INFO had an incorrect value. !> If >0, CGEESX returned an error code, the absolute !> value of which is returned. !> |
Definition at line 331 of file cget24.f.
| subroutine cget35 | ( | real | rmax, |
| integer | lmax, | ||
| integer | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
CGET35
!> !> CGET35 tests CTRSYL, a routine for solving the Sylvester matrix !> equation !> !> op(A)*X + ISGN*X*op(B) = scale*C, !> !> A and B are assumed to be in Schur canonical form, op() represents an !> optional transpose, and ISGN can be -1 or +1. Scale is an output !> less than or equal to 1, chosen to avoid overflow in X. !> !> The test code verifies that the following residual is order 1: !> !> norm(op(A)*X + ISGN*X*op(B) - scale*C) / !> (EPS*max(norm(A),norm(B))*norm(X)) !>
| [out] | RMAX | !> RMAX is REAL !> Value of the largest test ratio. !> |
| [out] | LMAX | !> LMAX is INTEGER !> Example number where largest test ratio achieved. !> |
| [out] | NINFO | !> NINFO is INTEGER !> Number of examples where INFO is nonzero. !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number. !> |
Definition at line 83 of file cget35.f.
| subroutine cget36 | ( | real | rmax, |
| integer | lmax, | ||
| integer | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
CGET36
!> !> CGET36 tests CTREXC, a routine for reordering diagonal entries of a !> matrix in complex Schur form. Thus, CLAEXC computes a unitary matrix !> Q such that !> !> Q' * T1 * Q = T2 !> !> and where one of the diagonal blocks of T1 (the one at row IFST) has !> been moved to position ILST. !> !> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2 !> is in Schur form, and that the final position of the IFST block is !> ILST. !> !> The test matrices are read from a file with logical unit number NIN. !>
| [out] | RMAX | !> RMAX is REAL !> Value of the largest test ratio. !> |
| [out] | LMAX | !> LMAX is INTEGER !> Example number where largest test ratio achieved. !> |
| [out] | NINFO | !> NINFO is INTEGER !> Number of examples where INFO is nonzero. !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number. !> |
Definition at line 84 of file cget36.f.
| subroutine cget37 | ( | real, dimension( 3 ) | rmax, |
| integer, dimension( 3 ) | lmax, | ||
| integer, dimension( 3 ) | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
CGET37
!> !> CGET37 tests CTRSNA, a routine for estimating condition numbers of !> eigenvalues and/or right eigenvectors of a matrix. !> !> The test matrices are read from a file with logical unit number NIN. !>
| [out] | RMAX | !> RMAX is REAL array, dimension (3) !> Value of the largest test ratio. !> RMAX(1) = largest ratio comparing different calls to CTRSNA !> RMAX(2) = largest error in reciprocal condition !> numbers taking their conditioning into account !> RMAX(3) = largest error in reciprocal condition !> numbers not taking their conditioning into !> account (may be larger than RMAX(2)) !> |
| [out] | LMAX | !> LMAX is INTEGER array, dimension (3) !> LMAX(i) is example number where largest test ratio !> RMAX(i) is achieved. Also: !> If CGEHRD returns INFO nonzero on example i, LMAX(1)=i !> If CHSEQR returns INFO nonzero on example i, LMAX(2)=i !> If CTRSNA returns INFO nonzero on example i, LMAX(3)=i !> |
| [out] | NINFO | !> NINFO is INTEGER array, dimension (3) !> NINFO(1) = No. of times CGEHRD returned INFO nonzero !> NINFO(2) = No. of times CHSEQR returned INFO nonzero !> NINFO(3) = No. of times CTRSNA returned INFO nonzero !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number !> |
Definition at line 89 of file cget37.f.
| subroutine cget38 | ( | real, dimension( 3 ) | rmax, |
| integer, dimension( 3 ) | lmax, | ||
| integer, dimension( 3 ) | ninfo, | ||
| integer | knt, | ||
| integer | nin ) |
CGET38
!> !> CGET38 tests CTRSEN, a routine for estimating condition numbers of a !> cluster of eigenvalues and/or its associated right invariant subspace !> !> The test matrices are read from a file with logical unit number NIN. !>
| [out] | RMAX | !> RMAX is REAL array, dimension (3) !> Values of the largest test ratios. !> RMAX(1) = largest residuals from CHST01 or comparing !> different calls to CTRSEN !> RMAX(2) = largest error in reciprocal condition !> numbers taking their conditioning into account !> RMAX(3) = largest error in reciprocal condition !> numbers not taking their conditioning into !> account (may be larger than RMAX(2)) !> |
| [out] | LMAX | !> LMAX is INTEGER array, dimension (3) !> LMAX(i) is example number where largest test ratio !> RMAX(i) is achieved. Also: !> If CGEHRD returns INFO nonzero on example i, LMAX(1)=i !> If CHSEQR returns INFO nonzero on example i, LMAX(2)=i !> If CTRSEN returns INFO nonzero on example i, LMAX(3)=i !> |
| [out] | NINFO | !> NINFO is INTEGER array, dimension (3) !> NINFO(1) = No. of times CGEHRD returned INFO nonzero !> NINFO(2) = No. of times CHSEQR returned INFO nonzero !> NINFO(3) = No. of times CTRSEN returned INFO nonzero !> |
| [out] | KNT | !> KNT is INTEGER !> Total number of examples tested. !> |
| [in] | NIN | !> NIN is INTEGER !> Input logical unit number. !> |
Definition at line 90 of file cget38.f.
| subroutine cget51 | ( | integer | itype, |
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real | result ) |
CGET51
!> !> CGET51 generally checks a decomposition of the form !> !> A = U B V**H !> !> where **H means conjugate transpose and U and V are unitary. !> !> Specifically, if ITYPE=1 !> !> RESULT = | A - U B V**H | / ( |A| n ulp ) !> !> If ITYPE=2, then: !> !> RESULT = | A - B | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT = | I - U U**H | / ( n ulp ) !>
| [in] | ITYPE | !> ITYPE is INTEGER !> Specifies the type of tests to be performed. !> =1: RESULT = | A - U B V**H | / ( |A| n ulp ) !> =2: RESULT = | A - B | / ( |A| n ulp ) !> =3: RESULT = | I - U U**H | / ( n ulp ) !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, CGET51 does nothing. !> It must be at least zero. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA, N) !> The original (unfactored) matrix. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB, N) !> The factored matrix. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 1 !> and at least N. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU, N) !> The unitary matrix on the left-hand side in the !> decomposition. !> Not referenced if ITYPE=2 !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | V | !> V is COMPLEX array, dimension (LDV, N) !> The unitary matrix on the left-hand side in the !> decomposition. !> Not referenced if ITYPE=2 !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (2*N**2) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL !> The values computed by the test specified by ITYPE. The !> value is currently limited to 1/ulp, to avoid overflow. !> Errors are flagged by RESULT=10/ulp. !> |
Definition at line 153 of file cget51.f.
| subroutine cget52 | ( | logical | left, |
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex, dimension( lde, * ) | e, | ||
| integer | lde, | ||
| complex, dimension( * ) | alpha, | ||
| complex, dimension( * ) | beta, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CGET52
!> !> CGET52 does an eigenvector check for the generalized eigenvalue !> problem. !> !> The basic test for right eigenvectors is: !> !> | b(i) A E(i) - a(i) B E(i) | !> RESULT(1) = max ------------------------------- !> i n ulp max( |b(i) A|, |a(i) B| ) !> !> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized !> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th !> generalized eigenvalue of m A - B. !> !> H H _ _ !> For left eigenvectors, A , B , a, and b are used. !> !> CGET52 also tests the normalization of E. Each eigenvector is !> supposed to be normalized so that the maximum !> of its elements is 1, where in this case, !> of a complex value x is |Re(x)| + |Im(x)| ; let us call this !> maximum norm of a vector v M(v). !> if a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate !> vector. The normalization test is: !> !> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp ) !> eigenvectors v(i) !>
| [in] | LEFT | !> LEFT is LOGICAL !> =.TRUE.: The eigenvectors in the columns of E are assumed !> to be *left* eigenvectors. !> =.FALSE.: The eigenvectors in the columns of E are assumed !> to be *right* eigenvectors. !> |
| [in] | N | !> N is INTEGER !> The size of the matrices. If it is zero, CGET52 does !> nothing. It must be at least zero. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA, N) !> The matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB, N) !> The matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 1 !> and at least N. !> |
| [in] | E | !> E is COMPLEX array, dimension (LDE, N) !> The matrix of eigenvectors. It must be O( 1 ). !> |
| [in] | LDE | !> LDE is INTEGER !> The leading dimension of E. It must be at least 1 and at !> least N. !> |
| [in] | ALPHA | !> ALPHA is COMPLEX array, dimension (N) !> The values a(i) as described above, which, along with b(i), !> define the generalized eigenvalues. !> |
| [in] | BETA | !> BETA is COMPLEX array, dimension (N) !> The values b(i) as described above, which, along with a(i), !> define the generalized eigenvalues. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N**2) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the test described above. If A E or !> B E is likely to overflow, then RESULT(1:2) is set to !> 10 / ulp. !> |
Definition at line 159 of file cget52.f.
| subroutine cget54 | ( | integer | n, |
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex, dimension( lds, * ) | s, | ||
| integer | lds, | ||
| complex, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex, dimension( * ) | work, | ||
| real | result ) |
CGET54
!> !> CGET54 checks a generalized decomposition of the form !> !> A = U*S*V' and B = U*T* V' !> !> where ' means conjugate transpose and U and V are unitary. !> !> Specifically, !> !> RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp ) !>
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, SGET54 does nothing. !> It must be at least zero. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA, N) !> The original (unfactored) matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB, N) !> The original (unfactored) matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of B. It must be at least 1 !> and at least N. !> |
| [in] | S | !> S is COMPLEX array, dimension (LDS, N) !> The factored matrix S. !> |
| [in] | LDS | !> LDS is INTEGER !> The leading dimension of S. It must be at least 1 !> and at least N. !> |
| [in] | T | !> T is COMPLEX array, dimension (LDT, N) !> The factored matrix T. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of T. It must be at least 1 !> and at least N. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU, N) !> The orthogonal matrix on the left-hand side in the !> decomposition. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | V | !> V is COMPLEX array, dimension (LDV, N) !> The orthogonal matrix on the left-hand side in the !> decomposition. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (3*N**2) !> |
| [out] | RESULT | !> RESULT is REAL !> The value RESULT, It is currently limited to 1/ulp, to !> avoid overflow. Errors are flagged by RESULT=10/ulp. !> |
Definition at line 154 of file cget54.f.
| subroutine cglmts | ( | integer | n, |
| integer | m, | ||
| integer | p, | ||
| complex, dimension( lda, * ) | a, | ||
| complex, dimension( lda, * ) | af, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| complex, dimension( ldb, * ) | bf, | ||
| integer | ldb, | ||
| complex, dimension( * ) | d, | ||
| complex, dimension( * ) | df, | ||
| complex, dimension( * ) | x, | ||
| complex, dimension( * ) | u, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real | result ) |
CGLMTS
!> !> CGLMTS tests CGGGLM - a subroutine for solving the generalized !> linear model problem. !>
| [in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,M) !> The N-by-M matrix A. !> |
| [out] | AF | !> AF is COMPLEX array, dimension (LDA,M) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF. LDA >= max(M,N). !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,P) !> The N-by-P matrix A. !> |
| [out] | BF | !> BF is COMPLEX array, dimension (LDB,P) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF. LDB >= max(P,N). !> |
| [in] | D | !> D is COMPLEX array, dimension( N ) !> On input, the left hand side of the GLM. !> |
| [out] | DF | !> DF is COMPLEX array, dimension( N ) !> |
| [out] | X | !> X is COMPLEX array, dimension( M ) !> solution vector X in the GLM problem. !> |
| [out] | U | !> U is COMPLEX array, dimension( P ) !> solution vector U in the GLM problem. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
| [out] | RESULT | !> RESULT is REAL !> The test ratio: !> norm( d - A*x - B*u ) !> RESULT = ----------------------------------------- !> (norm(A)+norm(B))*(norm(x)+norm(u))*EPS !> |
Definition at line 148 of file cglmts.f.
| subroutine cgqrts | ( | integer | n, |
| integer | m, | ||
| integer | p, | ||
| complex, dimension( lda, * ) | a, | ||
| complex, dimension( lda, * ) | af, | ||
| complex, dimension( lda, * ) | q, | ||
| complex, dimension( lda, * ) | r, | ||
| integer | lda, | ||
| complex, dimension( * ) | taua, | ||
| complex, dimension( ldb, * ) | b, | ||
| complex, dimension( ldb, * ) | bf, | ||
| complex, dimension( ldb, * ) | z, | ||
| complex, dimension( ldb, * ) | t, | ||
| complex, dimension( ldb, * ) | bwk, | ||
| integer | ldb, | ||
| complex, dimension( * ) | taub, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 4 ) | result ) |
CGQRTS
!> !> CGQRTS tests CGGQRF, which computes the GQR factorization of an !> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z. !>
| [in] | N | !> N is INTEGER !> The number of rows of the matrices A and B. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of columns of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of columns of the matrix B. P >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,M) !> The N-by-M matrix A. !> |
| [out] | AF | !> AF is COMPLEX array, dimension (LDA,N) !> Details of the GQR factorization of A and B, as returned !> by CGGQRF, see CGGQRF for further details. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDA,N) !> The M-by-M unitary matrix Q. !> |
| [out] | R | !> R is COMPLEX array, dimension (LDA,MAX(M,N)) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, R and Q. !> LDA >= max(M,N). !> |
| [out] | TAUA | !> TAUA is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by CGGQRF. !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,P) !> On entry, the N-by-P matrix A. !> |
| [out] | BF | !> BF is COMPLEX array, dimension (LDB,N) !> Details of the GQR factorization of A and B, as returned !> by CGGQRF, see CGGQRF for further details. !> |
| [out] | Z | !> Z is COMPLEX array, dimension (LDB,P) !> The P-by-P unitary matrix Z. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDB,max(P,N)) !> |
| [out] | BWK | !> BWK is COMPLEX array, dimension (LDB,N) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, Z and T. !> LDB >= max(P,N). !> |
| [out] | TAUB | !> TAUB is COMPLEX array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors, as returned !> by SGGRQF. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, LWORK >= max(N,M,P)**2. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (max(N,M,P)) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (4) !> The test ratios: !> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) !> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) !> |
Definition at line 174 of file cgqrts.f.
| subroutine cgrqts | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| complex, dimension( lda, * ) | af, | ||
| complex, dimension( lda, * ) | q, | ||
| complex, dimension( lda, * ) | r, | ||
| integer | lda, | ||
| complex, dimension( * ) | taua, | ||
| complex, dimension( ldb, * ) | b, | ||
| complex, dimension( ldb, * ) | bf, | ||
| complex, dimension( ldb, * ) | z, | ||
| complex, dimension( ldb, * ) | t, | ||
| complex, dimension( ldb, * ) | bwk, | ||
| integer | ldb, | ||
| complex, dimension( * ) | taub, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 4 ) | result ) |
CGRQTS
!> !> CGRQTS tests CGGRQF, which computes the GRQ factorization of an !> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The M-by-N matrix A. !> |
| [out] | AF | !> AF is COMPLEX array, dimension (LDA,N) !> Details of the GRQ factorization of A and B, as returned !> by CGGRQF, see CGGRQF for further details. !> |
| [out] | Q | !> Q is COMPLEX array, dimension (LDA,N) !> The N-by-N unitary matrix Q. !> |
| [out] | R | !> R is COMPLEX array, dimension (LDA,MAX(M,N)) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, R and Q. !> LDA >= max(M,N). !> |
| [out] | TAUA | !> TAUA is COMPLEX array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by SGGQRC. !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,N) !> On entry, the P-by-N matrix A. !> |
| [out] | BF | !> BF is COMPLEX array, dimension (LDB,N) !> Details of the GQR factorization of A and B, as returned !> by CGGRQF, see CGGRQF for further details. !> |
| [out] | Z | !> Z is REAL array, dimension (LDB,P) !> The P-by-P unitary matrix Z. !> |
| [out] | T | !> T is COMPLEX array, dimension (LDB,max(P,N)) !> |
| [out] | BWK | !> BWK is COMPLEX array, dimension (LDB,N) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, Z and T. !> LDB >= max(P,N). !> |
| [out] | TAUB | !> TAUB is COMPLEX array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors, as returned !> by SGGRQF. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, LWORK >= max(M,P,N)**2. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (4) !> The test ratios: !> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) !> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) !> |
Definition at line 174 of file cgrqts.f.
| subroutine cgsvts3 | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| complex, dimension( lda, * ) | af, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| complex, dimension( ldb, * ) | bf, | ||
| integer | ldb, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| real, dimension( * ) | alpha, | ||
| real, dimension( * ) | beta, | ||
| complex, dimension( ldr, * ) | r, | ||
| integer | ldr, | ||
| integer, dimension( * ) | iwork, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 6 ) | result ) |
CGSVTS3
!> !> CGSVTS3 tests CGGSVD3, which computes the GSVD of an M-by-N matrix A !> and a P-by-N matrix B: !> U'*A*Q = D1*R and V'*B*Q = D2*R. !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,M) !> The M-by-N matrix A. !> |
| [out] | AF | !> AF is COMPLEX array, dimension (LDA,N) !> Details of the GSVD of A and B, as returned by CGGSVD3, !> see CGGSVD3 for further details. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A and AF. !> LDA >= max( 1,M ). !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,P) !> On entry, the P-by-N matrix B. !> |
| [out] | BF | !> BF is COMPLEX array, dimension (LDB,N) !> Details of the GSVD of A and B, as returned by CGGSVD3, !> see CGGSVD3 for further details. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B and BF. !> LDB >= max(1,P). !> |
| [out] | U | !> U is COMPLEX array, dimension(LDU,M) !> The M by M unitary matrix U. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M). !> |
| [out] | V | !> V is COMPLEX array, dimension(LDV,M) !> The P by P unitary matrix V. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P). !> |
| [out] | Q | !> Q is COMPLEX array, dimension(LDQ,N) !> The N by N unitary matrix Q. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [out] | ALPHA | !> ALPHA is REAL array, dimension (N) !> |
| [out] | BETA | !> BETA is REAL array, dimension (N) !> !> The generalized singular value pairs of A and B, the !> ``diagonal'' matrices D1 and D2 are constructed from !> ALPHA and BETA, see subroutine CGGSVD3 for details. !> |
| [out] | R | !> R is COMPLEX array, dimension(LDQ,N) !> The upper triangular matrix R. !> |
| [in] | LDR | !> LDR is INTEGER !> The leading dimension of the array R. LDR >= max(1,N). !> |
| [out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK, !> LWORK >= max(M,P,N)*max(M,P,N). !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (max(M,P,N)) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (6) !> The test ratios: !> RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - U'*U ) / ( M*ULP ) !> RESULT(4) = norm( I - V'*V ) / ( P*ULP ) !> RESULT(5) = norm( I - Q'*Q ) / ( N*ULP ) !> RESULT(6) = 0 if ALPHA is in decreasing order; !> = ULPINV otherwise. !> |
Definition at line 206 of file cgsvts3.f.
| subroutine chbt21 | ( | character | uplo, |
| integer | n, | ||
| integer | ka, | ||
| integer | ks, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CHBT21
!> !> CHBT21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian banded, U is !> unitary, and S is diagonal (if KS=0) or symmetric !> tridiagonal (if KS=1). !> !> Specifically: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !>
| [in] | UPLO | !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced. !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, CHBT21 does nothing. !> It must be at least zero. !> |
| [in] | KA | !> KA is INTEGER !> The bandwidth of the matrix A. It must be at least zero. If !> it is larger than N-1, then max( 0, N-1 ) will be used. !> |
| [in] | KS | !> KS is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA, N) !> The original (unfactored) matrix. It is assumed to be !> hermitian, and only the upper (UPLO='U') or only the lower !> (UPLO='L') will be referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least min( KA, N-1 ). !> |
| [in] | D | !> D is REAL array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix S. !> |
| [in] | E | !> E is REAL array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix S. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc. !> Not referenced if KS=0. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU, N) !> The unitary matrix in the decomposition, expressed as a !> dense matrix (i.e., not as a product of Householder !> transformations, Givens transformations, etc.) !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N**2) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> |
Definition at line 150 of file chbt21.f.
| subroutine chet21 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | kband, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CHET21
!> !> CHET21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian, U is unitary, and !> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if !> KBAND=1). !> !> If ITYPE=1, then U is represented as a dense matrix; otherwise U is !> expressed as a product of Householder transformations, whose vectors !> are stored in the array and whose scaling constants are in . !> We shall use the letter to refer to the product of Householder !> transformations (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> If ITYPE=2, then: !> !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT(1) = | I - U V**H | / ( n ulp ) !> !> For ITYPE > 1, the transformation U is expressed as a product !> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)**H and each !> vector v(j) has its first j elements 0 and the remaining n-j elements !> stored in V(j+1:n,j). !>
| [in] | ITYPE | !> ITYPE is INTEGER !> Specifies the type of tests to be performed. !> 1: U expressed as a dense unitary matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> 2: U expressed as a product V of Housholder transformations: !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> 3: U expressed both as a dense unitary matrix and !> as a product of Housholder transformations: !> RESULT(1) = | I - U V**H | / ( n ulp ) !> |
| [in] | UPLO | !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced. !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, CHET21 does nothing. !> It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA, N) !> The original (unfactored) matrix. It is assumed to be !> hermitian, and only the upper (UPLO='U') or only the lower !> (UPLO='L') will be referenced. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> |
| [in] | D | !> D is REAL array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix. !> |
| [in] | E | !> E is REAL array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc. !> Not referenced if KBAND=0. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU, N) !> If ITYPE=1 or 3, this contains the unitary matrix in !> the decomposition, expressed as a dense matrix. If ITYPE=2, !> then it is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | V | !> V is COMPLEX array, dimension (LDV, N) !> If ITYPE=2 or 3, the columns of this array contain the !> Householder vectors used to describe the unitary matrix !> in the decomposition. If UPLO='L', then the vectors are in !> the lower triangle, if UPLO='U', then in the upper !> triangle. !> *NOTE* If ITYPE=2 or 3, V is modified and restored. The !> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') !> is set to one, and later reset to its original value, during !> the course of the calculation. !> If ITYPE=1, then it is neither referenced nor modified. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> |
| [in] | TAU | !> TAU is COMPLEX array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)...H(n-2) !> If ITYPE < 2, then TAU is not referenced. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (2*N**2) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. RESULT(2) is modified only !> if ITYPE=1. !> |
Definition at line 212 of file chet21.f.
| subroutine chet22 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | m, | ||
| integer | kband, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CHET22
!> !> CHET22 generally checks a decomposition of the form !> !> A U = U S !> !> where A is complex Hermitian, the columns of U are orthonormal, !> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if !> KBAND=1). If ITYPE=1, then U is represented as a dense matrix, !> otherwise the U is expressed as a product of Householder !> transformations, whose vectors are stored in the array and !> whose scaling constants are in we shall use the letter !> to refer to the product of Householder transformations !> (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and !> RESULT(2) = | I - U**H U | / ( m ulp ) !>
!> ITYPE INTEGER !> Specifies the type of tests to be performed. !> 1: U expressed as a dense orthogonal matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> UPLO CHARACTER !> If UPLO='U', the upper triangle of A will be used and the !> (strictly) lower triangle will not be referenced. If !> UPLO='L', the lower triangle of A will be used and the !> (strictly) upper triangle will not be referenced. !> Not modified. !> !> N INTEGER !> The size of the matrix. If it is zero, CHET22 does nothing. !> It must be at least zero. !> Not modified. !> !> M INTEGER !> The number of columns of U. If it is zero, CHET22 does !> nothing. It must be at least zero. !> Not modified. !> !> KBAND INTEGER !> The bandwidth of the matrix. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> Not modified. !> !> A COMPLEX array, dimension (LDA , N) !> The original (unfactored) matrix. It is assumed to be !> symmetric, and only the upper (UPLO='U') or only the lower !> (UPLO='L') will be referenced. !> Not modified. !> !> LDA INTEGER !> The leading dimension of A. It must be at least 1 !> and at least N. !> Not modified. !> !> D REAL array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix. !> Not modified. !> !> E REAL array, dimension (N) !> The off-diagonal of the (symmetric tri-) diagonal matrix. !> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc. !> Not referenced if KBAND=0. !> Not modified. !> !> U COMPLEX array, dimension (LDU, N) !> If ITYPE=1, this contains the orthogonal matrix in !> the decomposition, expressed as a dense matrix. !> Not modified. !> !> LDU INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> Not modified. !> !> V COMPLEX array, dimension (LDV, N) !> If ITYPE=2 or 3, the lower triangle of this array contains !> the Householder vectors used to describe the orthogonal !> matrix in the decomposition. If ITYPE=1, then it is not !> referenced. !> Not modified. !> !> LDV INTEGER !> The leading dimension of V. LDV must be at least N and !> at least 1. !> Not modified. !> !> TAU COMPLEX array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)...H(n-2) !> If ITYPE < 2, then TAU is not referenced. !> Not modified. !> !> WORK COMPLEX array, dimension (2*N**2) !> Workspace. !> Modified. !> !> RWORK REAL array, dimension (N) !> Workspace. !> Modified. !> !> RESULT REAL array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. RESULT(2) is modified only !> if LDU is at least N. !> Modified. !>
Definition at line 159 of file chet22.f.
| subroutine chkxer | ( | character*(*) | srnamt, |
| integer | infot, | ||
| integer | nout, | ||
| logical | lerr, | ||
| logical | ok ) |
CHKXER
!>
Definition at line 40 of file chkxer.f.
| subroutine chpt21 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | kband, | ||
| complex, dimension( * ) | ap, | ||
| real, dimension( * ) | d, | ||
| real, dimension( * ) | e, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | vp, | ||
| complex, dimension( * ) | tau, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CHPT21
!> !> CHPT21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian, U is !> unitary, and S is diagonal (if KBAND=0) or (real) symmetric !> tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as !> a dense matrix, otherwise the U is expressed as a product of !> Householder transformations, whose vectors are stored in the !> array and whose scaling constants are in we shall !> use the letter to refer to the product of Householder !> transformations (which should be equal to U). !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> If ITYPE=2, then: !> !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT(1) = | I - U V**H | / ( n ulp ) !> !> Packed storage means that, for example, if UPLO='U', then the columns !> of the upper triangle of A are stored one after another, so that !> A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if !> UPLO='L', then the columns of the lower triangle of A are stored one !> after another in AP, so that A(j+1,j+1) immediately follows A(n,j) !> in the array AP. This means that A(i,j) is stored in: !> !> AP( i + j*(j-1)/2 ) if UPLO='U' !> !> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L' !> !> The array VP bears the same relation to the matrix V that A does to !> AP. !> !> For ITYPE > 1, the transformation U is expressed as a product !> of Householder transformations: !> !> If UPLO='U', then V = H(n-1)...H(1), where !> !> H(j) = I - tau(j) v(j) v(j)**H !> !> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1), !> (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ), !> the j-th element is 1, and the last n-j elements are 0. !> !> If UPLO='L', then V = H(1)...H(n-1), where !> !> H(j) = I - tau(j) v(j) v(j)**H !> !> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the !> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e., !> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .) !>
| [in] | ITYPE | !> ITYPE is INTEGER !> Specifies the type of tests to be performed. !> 1: U expressed as a dense unitary matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> 2: U expressed as a product V of Housholder transformations: !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> 3: U expressed both as a dense unitary matrix and !> as a product of Housholder transformations: !> RESULT(1) = | I - U V**H | / ( n ulp ) !> |
| [in] | UPLO | !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced. !> |
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, CHPT21 does nothing. !> It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix. It may only be zero or one. !> If zero, then S is diagonal, and E is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | AP | !> AP is COMPLEX array, dimension (N*(N+1)/2) !> The original (unfactored) matrix. It is assumed to be !> hermitian, and contains the columns of just the upper !> triangle (UPLO='U') or only the lower triangle (UPLO='L'), !> packed one after another. !> |
| [in] | D | !> D is REAL array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix. !> |
| [in] | E | !> E is REAL array, dimension (N) !> The off-diagonal of the (symmetric tri-) diagonal matrix. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc. !> Not referenced if KBAND=0. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU, N) !> If ITYPE=1 or 3, this contains the unitary matrix in !> the decomposition, expressed as a dense matrix. If ITYPE=2, !> then it is not referenced. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N and !> at least 1. !> |
| [in] | VP | !> VP is REAL array, dimension (N*(N+1)/2) !> If ITYPE=2 or 3, the columns of this array contain the !> Householder vectors used to describe the unitary matrix !> in the decomposition, as described in purpose. !> *NOTE* If ITYPE=2 or 3, V is modified and restored. The !> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') !> is set to one, and later reset to its original value, during !> the course of the calculation. !> If ITYPE=1, then it is neither referenced nor modified. !> |
| [in] | TAU | !> TAU is COMPLEX array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)...H(n-2) !> If ITYPE < 2, then TAU is not referenced. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N**2) !> Workspace. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> Workspace. !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. RESULT(2) is modified only !> if ITYPE=1. !> |
Definition at line 226 of file chpt21.f.
| subroutine chst01 | ( | integer | n, |
| integer | ilo, | ||
| integer | ihi, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldh, * ) | h, | ||
| integer | ldh, | ||
| complex, dimension( ldq, * ) | q, | ||
| integer | ldq, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CHST01
!> !> CHST01 tests the reduction of a general matrix A to upper Hessenberg !> form: A = Q*H*Q'. Two test ratios are computed; !> !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> !> The matrix Q is assumed to be given explicitly as it would be !> following CGEHRD + CUNGHR. !> !> In this version, ILO and IHI are not used, but they could be used !> to save some work if this is desired. !>
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | ILO | !> ILO is INTEGER !> |
| [in] | IHI | !> IHI is INTEGER !> !> A is assumed to be upper triangular in rows and columns !> 1:ILO-1 and IHI+1:N, so Q differs from the identity only in !> rows and columns ILO+1:IHI. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The original n by n matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | H | !> H is COMPLEX array, dimension (LDH,N) !> The upper Hessenberg matrix H from the reduction A = Q*H*Q' !> as computed by CGEHRD. H is assumed to be zero below the !> first subdiagonal. !> |
| [in] | LDH | !> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !> |
| [in] | Q | !> Q is COMPLEX array, dimension (LDQ,N) !> The orthogonal matrix Q from the reduction A = Q*H*Q' as !> computed by CGEHRD + CUNGHR. !> |
| [in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. LWORK >= 2*N*N. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> |
Definition at line 138 of file chst01.f.
| subroutine clarfy | ( | character | uplo, |
| integer | n, | ||
| complex, dimension( * ) | v, | ||
| integer | incv, | ||
| complex | tau, | ||
| complex, dimension( ldc, * ) | c, | ||
| integer | ldc, | ||
| complex, dimension( * ) | work ) |
CLARFY
!> !> CLARFY applies an elementary reflector, or Householder matrix, H, !> to an n x n Hermitian matrix C, from both the left and the right. !> !> H is represented in the form !> !> H = I - tau * v * v' !> !> where tau is a scalar and v is a vector. !> !> If tau is zero, then H is taken to be the unit matrix. !>
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix C is stored. !> = 'U': Upper triangle !> = 'L': Lower triangle !> |
| [in] | N | !> N is INTEGER !> The number of rows and columns of the matrix C. N >= 0. !> |
| [in] | V | !> V is COMPLEX array, dimension !> (1 + (N-1)*abs(INCV)) !> The vector v as described above. !> |
| [in] | INCV | !> INCV is INTEGER !> The increment between successive elements of v. INCV must !> not be zero. !> |
| [in] | TAU | !> TAU is COMPLEX !> The value tau as described above. !> |
| [in,out] | C | !> C is COMPLEX array, dimension (LDC, N) !> On entry, the matrix C. !> On exit, C is overwritten by H * C * H'. !> |
| [in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max( 1, N ). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N) !> |
Definition at line 107 of file clarfy.f.
| subroutine clarhs | ( | character*3 | path, |
| character | xtype, | ||
| character | uplo, | ||
| character | trans, | ||
| integer | m, | ||
| integer | n, | ||
| integer | kl, | ||
| integer | ku, | ||
| integer | nrhs, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldx, * ) | x, | ||
| integer | ldx, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| integer, dimension( 4 ) | iseed, | ||
| integer | info ) |
CLARHS
!> !> CLARHS chooses a set of NRHS random solution vectors and sets !> up the right hand sides for the linear system !> op(A) * X = B, !> where op(A) = A, A**T or A**H, depending on TRANS. !>
| [in] | PATH | !> PATH is CHARACTER*3 !> The type of the complex matrix A. PATH may be given in any !> combination of upper and lower case. Valid paths include !> xGE: General m x n matrix !> xGB: General banded matrix !> xPO: Hermitian positive definite, 2-D storage !> xPP: Hermitian positive definite packed !> xPB: Hermitian positive definite banded !> xHE: Hermitian indefinite, 2-D storage !> xHP: Hermitian indefinite packed !> xHB: Hermitian indefinite banded !> xSY: Symmetric indefinite, 2-D storage !> xSP: Symmetric indefinite packed !> xSB: Symmetric indefinite banded !> xTR: Triangular !> xTP: Triangular packed !> xTB: Triangular banded !> xQR: General m x n matrix !> xLQ: General m x n matrix !> xQL: General m x n matrix !> xRQ: General m x n matrix !> where the leading character indicates the precision. !> |
| [in] | XTYPE | !> XTYPE is CHARACTER*1 !> Specifies how the exact solution X will be determined: !> = 'N': New solution; generate a random X. !> = 'C': Computed; use value of X on entry. !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Used only if A is symmetric or triangular; specifies whether !> the upper or lower triangular part of the matrix A is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | TRANS | !> TRANS is CHARACTER*1 !> Used only if A is nonsymmetric; specifies the operation !> applied to the matrix A. !> = 'N': B := A * X (No transpose) !> = 'T': B := A**T * X (Transpose) !> = 'C': B := A**H * X (Conjugate transpose) !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
| [in] | KL | !> KL is INTEGER !> Used only if A is a band matrix; specifies the number of !> subdiagonals of A if A is a general band matrix or if A is !> symmetric or triangular and UPLO = 'L'; specifies the number !> of superdiagonals of A if A is symmetric or triangular and !> UPLO = 'U'. 0 <= KL <= M-1. !> |
| [in] | KU | !> KU is INTEGER !> Used only if A is a general band matrix or if A is !> triangular. !> !> If PATH = xGB, specifies the number of superdiagonals of A, !> and 0 <= KU <= N-1. !> !> If PATH = xTR, xTP, or xTB, specifies whether or not the !> matrix has unit diagonal: !> = 1: matrix has non-unit diagonal (default) !> = 2: matrix has unit diagonal !> |
| [in] | NRHS | !> NRHS is INTEGER !> The number of right hand side vectors in the system A*X = B. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The test matrix whose type is given by PATH. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If PATH = xGB, LDA >= KL+KU+1. !> If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1. !> Otherwise, LDA >= max(1,M). !> |
| [in,out] | X | !> X is or output) COMPLEX array, dimension (LDX,NRHS) !> On entry, if XTYPE = 'C' (for 'Computed'), then X contains !> the exact solution to the system of linear equations. !> On exit, if XTYPE = 'N' (for 'New'), then X is initialized !> with random values. !> |
| [in] | LDX | !> LDX is INTEGER !> The leading dimension of the array X. If TRANS = 'N', !> LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M). !> |
| [out] | B | !> B is COMPLEX array, dimension (LDB,NRHS) !> The right hand side vector(s) for the system of equations, !> computed from B = op(A) * X, where op(A) is determined by !> TRANS. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. If TRANS = 'N', !> LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N). !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> The seed vector for the random number generator (used in !> CLATMS). Modified on exit. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 206 of file clarhs.f.
| subroutine clatm4 | ( | integer | itype, |
| integer | n, | ||
| integer | nz1, | ||
| integer | nz2, | ||
| logical | rsign, | ||
| real | amagn, | ||
| real | rcond, | ||
| real | triang, | ||
| integer | idist, | ||
| integer, dimension( 4 ) | iseed, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda ) |
CLATM4
!> !> CLATM4 generates basic square matrices, which may later be !> multiplied by others in order to produce test matrices. It is !> intended mainly to be used to test the generalized eigenvalue !> routines. !> !> It first generates the diagonal and (possibly) subdiagonal, !> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND. !> It then fills in the upper triangle with random numbers, if TRIANG is !> non-zero. !>
| [in] | ITYPE | !> ITYPE is INTEGER !> The of matrix on the diagonal and sub-diagonal. !> If ITYPE < 0, then type abs(ITYPE) is generated and then !> swapped end for end (A(I,J) := A'(N-J,N-I).) See also !> the description of AMAGN and RSIGN. !> !> Special types: !> = 0: the zero matrix. !> = 1: the identity. !> = 2: a transposed Jordan block. !> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block !> followed by a k x k identity block, where k=(N-1)/2. !> If N is even, then k=(N-2)/2, and a zero diagonal entry !> is tacked onto the end. !> !> Diagonal types. The diagonal consists of NZ1 zeros, then !> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE !> specifies the nonzero diagonal entries as follows: !> = 4: 1, ..., k !> = 5: 1, RCOND, ..., RCOND !> = 6: 1, ..., 1, RCOND !> = 7: 1, a, a^2, ..., a^(k-1)=RCOND !> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND !> = 9: random numbers chosen from (RCOND,1) !> = 10: random numbers with distribution IDIST (see CLARND.) !> |
| [in] | N | !> N is INTEGER !> The order of the matrix. !> |
| [in] | NZ1 | !> NZ1 is INTEGER !> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will !> be zero. !> |
| [in] | NZ2 | !> NZ2 is INTEGER !> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will !> be zero. !> |
| [in] | RSIGN | !> RSIGN is LOGICAL !> = .TRUE.: The diagonal and subdiagonal entries will be !> multiplied by random numbers of magnitude 1. !> = .FALSE.: The diagonal and subdiagonal entries will be !> left as they are (usually non-negative real.) !> |
| [in] | AMAGN | !> AMAGN is REAL !> The diagonal and subdiagonal entries will be multiplied by !> AMAGN. !> |
| [in] | RCOND | !> RCOND is REAL !> If abs(ITYPE) > 4, then the smallest diagonal entry will be !> RCOND. RCOND must be between 0 and 1. !> |
| [in] | TRIANG | !> TRIANG is REAL !> The entries above the diagonal will be random numbers with !> magnitude bounded by TRIANG (i.e., random numbers multiplied !> by TRIANG.) !> |
| [in] | IDIST | !> IDIST is INTEGER !> On entry, DIST specifies the type of distribution to be used !> to generate a random matrix . !> = 1: real and imaginary parts each UNIFORM( 0, 1 ) !> = 2: real and imaginary parts each UNIFORM( -1, 1 ) !> = 3: real and imaginary parts each NORMAL( 0, 1 ) !> = 4: complex number uniform in DISK( 0, 1 ) !> |
| [in,out] | ISEED | !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The values of ISEED are changed on exit, and can !> be used in the next call to CLATM4 to continue the same !> random number sequence. !> Note: ISEED(4) should be odd, for the random number generator !> used at present. !> |
| [out] | A | !> A is COMPLEX array, dimension (LDA, N) !> Array to be computed. !> |
| [in] | LDA | !> LDA is INTEGER !> Leading dimension of A. Must be at least 1 and at least N. !> |
Definition at line 169 of file clatm4.f.
CLCTES
!> !> CLCTES returns .TRUE. if the eigenvalue Z/D is to be selected !> (specifically, in this subroutine, if the real part of the !> eigenvalue is negative), and otherwise it returns .FALSE.. !> !> It is used by the test routine CDRGES to test whether the driver !> routine CGGES successfully sorts eigenvalues. !>
| [in] | Z | !> Z is COMPLEX !> The numerator part of a complex eigenvalue Z/D. !> |
| [in] | D | !> D is COMPLEX !> The denominator part of a complex eigenvalue Z/D. !> |
Definition at line 57 of file clctes.f.
CLCTSX
!> !> This function is used to determine what eigenvalues will be !> selected. If this is part of the test driver CDRGSX, do not !> change the code UNLESS you are testing input examples and not !> using the built-in examples. !>
| [in] | ALPHA | !> ALPHA is COMPLEX !> |
| [in] | BETA | !> BETA is COMPLEX !> !> parameters to decide whether the pair (ALPHA, BETA) is !> selected. !> |
Definition at line 56 of file clctsx.f.
| subroutine clsets | ( | integer | m, |
| integer | p, | ||
| integer | n, | ||
| complex, dimension( lda, * ) | a, | ||
| complex, dimension( lda, * ) | af, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| complex, dimension( ldb, * ) | bf, | ||
| integer | ldb, | ||
| complex, dimension( * ) | c, | ||
| complex, dimension( * ) | cf, | ||
| complex, dimension( * ) | d, | ||
| complex, dimension( * ) | df, | ||
| complex, dimension( * ) | x, | ||
| complex, dimension( lwork ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CLSETS
!> !> CLSETS tests CGGLSE - a subroutine for solving linear equality !> constrained least square problem (LSE). !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The M-by-N matrix A. !> |
| [out] | AF | !> AF is COMPLEX array, dimension (LDA,N) !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB,N) !> The P-by-N matrix A. !> |
| [out] | BF | !> BF is COMPLEX array, dimension (LDB,N) !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the arrays B, BF, V and S. !> LDB >= max(P,N). !> |
| [in] | C | !> C is COMPLEX array, dimension( M ) !> the vector C in the LSE problem. !> |
| [out] | CF | !> CF is COMPLEX array, dimension( M ) !> |
| [in] | D | !> D is COMPLEX array, dimension( P ) !> the vector D in the LSE problem. !> |
| [out] | DF | !> DF is COMPLEX array, dimension( P ) !> |
| [out] | X | !> X is COMPLEX array, dimension( N ) !> solution vector X in the LSE problem. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (M) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The test ratios: !> RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS !> RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS !> |
Definition at line 153 of file clsets.f.
| subroutine csbmv | ( | character | uplo, |
| integer | n, | ||
| integer | k, | ||
| complex | alpha, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( * ) | x, | ||
| integer | incx, | ||
| complex | beta, | ||
| complex, dimension( * ) | y, | ||
| integer | incy ) |
CSBMV
!> !> CSBMV performs the matrix-vector operation !> !> y := alpha*A*x + beta*y, !> !> where alpha and beta are scalars, x and y are n element vectors and !> A is an n by n symmetric band matrix, with k super-diagonals. !>
!> UPLO - CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the band matrix A is being supplied as !> follows: !> !> UPLO = 'U' or 'u' The upper triangular part of A is !> being supplied. !> !> UPLO = 'L' or 'l' The lower triangular part of A is !> being supplied. !> !> Unchanged on exit. !> !> N - INTEGER !> On entry, N specifies the order of the matrix A. !> N must be at least zero. !> Unchanged on exit. !> !> K - INTEGER !> On entry, K specifies the number of super-diagonals of the !> matrix A. K must satisfy 0 .le. K. !> Unchanged on exit. !> !> ALPHA - COMPLEX !> On entry, ALPHA specifies the scalar alpha. !> Unchanged on exit. !> !> A - COMPLEX array, dimension( LDA, N ) !> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) !> by n part of the array A must contain the upper triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row !> ( k + 1 ) of the array, the first super-diagonal starting at !> position 2 in row k, and so on. The top left k by k triangle !> of the array A is not referenced. !> The following program segment will transfer the upper !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = K + 1 - J !> DO 10, I = MAX( 1, J - K ), J !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) !> by n part of the array A must contain the lower triangular !> band part of the symmetric matrix, supplied column by !> column, with the leading diagonal of the matrix in row 1 of !> the array, the first sub-diagonal starting at position 1 in !> row 2, and so on. The bottom right k by k triangle of the !> array A is not referenced. !> The following program segment will transfer the lower !> triangular part of a symmetric band matrix from conventional !> full matrix storage to band storage: !> !> DO 20, J = 1, N !> M = 1 - J !> DO 10, I = J, MIN( N, J + K ) !> A( M + I, J ) = matrix( I, J ) !> 10 CONTINUE !> 20 CONTINUE !> !> Unchanged on exit. !> !> LDA - INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. LDA must be at least !> ( k + 1 ). !> Unchanged on exit. !> !> X - COMPLEX array, dimension at least !> ( 1 + ( N - 1 )*abs( INCX ) ). !> Before entry, the incremented array X must contain the !> vector x. !> Unchanged on exit. !> !> INCX - INTEGER !> On entry, INCX specifies the increment for the elements of !> X. INCX must not be zero. !> Unchanged on exit. !> !> BETA - COMPLEX !> On entry, BETA specifies the scalar beta. !> Unchanged on exit. !> !> Y - COMPLEX array, dimension at least !> ( 1 + ( N - 1 )*abs( INCY ) ). !> Before entry, the incremented array Y must contain the !> vector y. On exit, Y is overwritten by the updated vector y. !> !> INCY - INTEGER !> On entry, INCY specifies the increment for the elements of !> Y. INCY must not be zero. !> Unchanged on exit. !>
Definition at line 150 of file csbmv.f.
| subroutine csgt01 | ( | integer | itype, |
| character | uplo, | ||
| integer | n, | ||
| integer | m, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldb, * ) | b, | ||
| integer | ldb, | ||
| complex, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| real, dimension( * ) | d, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( * ) | result ) |
CSGT01
!> !> CSGT01 checks a decomposition of the form !> !> A Z = B Z D or !> A B Z = Z D or !> B A Z = Z D !> !> where A is a Hermitian matrix, B is Hermitian positive definite, !> Z is unitary, and D is diagonal. !> !> One of the following test ratios is computed: !> !> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) !>
| [in] | ITYPE | !> ITYPE is INTEGER !> The form of the Hermitian generalized eigenproblem. !> = 1: A*z = (lambda)*B*z !> = 2: A*B*z = (lambda)*z !> = 3: B*A*z = (lambda)*z !> |
| [in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrices A and B is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
| [in] | M | !> M is INTEGER !> The number of eigenvalues found. M >= 0. !> |
| [in] | A | !> A is COMPLEX array, dimension (LDA, N) !> The original Hermitian matrix A. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
| [in] | B | !> B is COMPLEX array, dimension (LDB, N) !> The original Hermitian positive definite matrix B. !> |
| [in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
| [in] | Z | !> Z is COMPLEX array, dimension (LDZ, M) !> The computed eigenvectors of the generalized eigenproblem. !> |
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= max(1,N). !> |
| [in] | D | !> D is REAL array, dimension (M) !> The computed eigenvalues of the generalized eigenproblem. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N*N) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (1) !> The test ratio as described above. !> |
Definition at line 150 of file csgt01.f.
| logical function cslect | ( | complex | z | ) |
CSLECT
!> !> CSLECT returns .TRUE. if the eigenvalue Z is to be selected, !> otherwise it returns .FALSE. !> It is used by CCHK41 to test if CGEES successfully sorts eigenvalues, !> and by CCHK43 to test if CGEESX successfully sorts eigenvalues. !> !> The common block /SSLCT/ controls how eigenvalues are selected. !> If SELOPT = 0, then CSLECT return .TRUE. when real(Z) is less than !> zero, and .FALSE. otherwise. !> If SELOPT is at least 1, CSLECT returns SELVAL(SELOPT) and adds 1 !> to SELOPT, cycling back to 1 at SELMAX. !>
| [in] | Z | !> Z is COMPLEX !> The eigenvalue Z. !> |
Definition at line 55 of file cslect.f.
| subroutine cstt21 | ( | integer | n, |
| integer | kband, | ||
| real, dimension( * ) | ad, | ||
| real, dimension( * ) | ae, | ||
| real, dimension( * ) | sd, | ||
| real, dimension( * ) | se, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | work, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CSTT21
!> !> CSTT21 checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is real symmetric tridiagonal, !> U is unitary, and S is real and diagonal (if KBAND=0) or symmetric !> tridiagonal (if KBAND=1). Two tests are performed: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) !> !> RESULT(2) = | I - U U**H | / ( n ulp ) !>
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, CSTT21 does nothing. !> It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and SE is not referenced. If !> one, then S is symmetric tri-diagonal. !> |
| [in] | AD | !> AD is REAL array, dimension (N) !> The diagonal of the original (unfactored) matrix A. A is !> assumed to be real symmetric tridiagonal. !> |
| [in] | AE | !> AE is REAL array, dimension (N-1) !> The off-diagonal of the original (unfactored) matrix A. A !> is assumed to be symmetric tridiagonal. AE(1) is the (1,2) !> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. !> |
| [in] | SD | !> SD is REAL array, dimension (N) !> The diagonal of the real (symmetric tri-) diagonal matrix S. !> |
| [in] | SE | !> SE is REAL array, dimension (N-1) !> The off-diagonal of the (symmetric tri-) diagonal matrix S. !> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the !> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) !> element, etc. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU, N) !> The unitary matrix in the decomposition. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (N**2) !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> RESULT(1) is always modified. !> |
Definition at line 131 of file cstt21.f.
| subroutine cstt22 | ( | integer | n, |
| integer | m, | ||
| integer | kband, | ||
| real, dimension( * ) | ad, | ||
| real, dimension( * ) | ae, | ||
| real, dimension( * ) | sd, | ||
| real, dimension( * ) | se, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldwork, * ) | work, | ||
| integer | ldwork, | ||
| real, dimension( * ) | rwork, | ||
| real, dimension( 2 ) | result ) |
CSTT22
!> !> CSTT22 checks a set of M eigenvalues and eigenvectors, !> !> A U = U S !> !> where A is Hermitian tridiagonal, the columns of U are unitary, !> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1). !> Two tests are performed: !> !> RESULT(1) = | U* A U - S | / ( |A| m ulp ) !> !> RESULT(2) = | I - U*U | / ( m ulp ) !>
| [in] | N | !> N is INTEGER !> The size of the matrix. If it is zero, CSTT22 does nothing. !> It must be at least zero. !> |
| [in] | M | !> M is INTEGER !> The number of eigenpairs to check. If it is zero, CSTT22 !> does nothing. It must be at least zero. !> |
| [in] | KBAND | !> KBAND is INTEGER !> The bandwidth of the matrix S. It may only be zero or one. !> If zero, then S is diagonal, and SE is not referenced. If !> one, then S is Hermitian tri-diagonal. !> |
| [in] | AD | !> AD is REAL array, dimension (N) !> The diagonal of the original (unfactored) matrix A. A is !> assumed to be Hermitian tridiagonal. !> |
| [in] | AE | !> AE is REAL array, dimension (N) !> The off-diagonal of the original (unfactored) matrix A. A !> is assumed to be Hermitian tridiagonal. AE(1) is ignored, !> AE(2) is the (1,2) and (2,1) element, etc. !> |
| [in] | SD | !> SD is REAL array, dimension (N) !> The diagonal of the (Hermitian tri-) diagonal matrix S. !> |
| [in] | SE | !> SE is REAL array, dimension (N) !> The off-diagonal of the (Hermitian tri-) diagonal matrix S. !> Not referenced if KBSND=0. If KBAND=1, then AE(1) is !> ignored, SE(2) is the (1,2) and (2,1) element, etc. !> |
| [in] | U | !> U is REAL array, dimension (LDU, N) !> The unitary matrix in the decomposition. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. LDU must be at least N. !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LDWORK, M+1) !> |
| [in] | LDWORK | !> LDWORK is INTEGER !> The leading dimension of WORK. LDWORK must be at least !> max(1,M). !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
| [out] | RESULT | !> RESULT is REAL array, dimension (2) !> The values computed by the two tests described above. The !> values are currently limited to 1/ulp, to avoid overflow. !> |
Definition at line 143 of file cstt22.f.
| subroutine cunt01 | ( | character | rowcol, |
| integer | m, | ||
| integer | n, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real | resid ) |
CUNT01
!> !> CUNT01 checks that the matrix U is unitary by computing the ratio !> !> RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', !> or !> RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. !> !> Alternatively, if there isn't sufficient workspace to form !> I - U*U' or I - U'*U, the ratio is computed as !> !> RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', !> or !> RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. !> !> where EPS is the machine precision. ROWCOL is used only if m = n; !> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is !> assumed to be 'R'. !>
| [in] | ROWCOL | !> ROWCOL is CHARACTER !> Specifies whether the rows or columns of U should be checked !> for orthogonality. Used only if M = N. !> = 'R': Check for orthogonal rows of U !> = 'C': Check for orthogonal columns of U !> |
| [in] | M | !> M is INTEGER !> The number of rows of the matrix U. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix U. !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU,N) !> The unitary matrix U. U is checked for orthogonal columns !> if m > n or if m = n and ROWCOL = 'C'. U is checked for !> orthogonal rows if m < n or if m = n and ROWCOL = 'R'. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. For best performance, LWORK !> should be at least N*N if ROWCOL = 'C' or M*M if !> ROWCOL = 'R', but the test will be done even if LWORK is 0. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (min(M,N)) !> Used only if LWORK is large enough to use the Level 3 BLAS !> code. !> |
| [out] | RESID | !> RESID is REAL !> RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or !> RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. !> |
Definition at line 124 of file cunt01.f.
| subroutine cunt03 | ( | character*( * ) | rc, |
| integer | mu, | ||
| integer | mv, | ||
| integer | n, | ||
| integer | k, | ||
| complex, dimension( ldu, * ) | u, | ||
| integer | ldu, | ||
| complex, dimension( ldv, * ) | v, | ||
| integer | ldv, | ||
| complex, dimension( * ) | work, | ||
| integer | lwork, | ||
| real, dimension( * ) | rwork, | ||
| real | result, | ||
| integer | info ) |
CUNT03
!> !> CUNT03 compares two unitary matrices U and V to see if their !> corresponding rows or columns span the same spaces. The rows are !> checked if RC = 'R', and the columns are checked if RC = 'C'. !> !> RESULT is the maximum of !> !> | V*V' - I | / ( MV ulp ), if RC = 'R', or !> !> | V'*V - I | / ( MV ulp ), if RC = 'C', !> !> and the maximum over rows (or columns) 1 to K of !> !> | U(i) - S*V(i) |/ ( N ulp ) !> !> where abs(S) = 1 (chosen to minimize the expression), U(i) is the !> i-th row (column) of U, and V(i) is the i-th row (column) of V. !>
| [in] | RC | !> RC is CHARACTER*1 !> If RC = 'R' the rows of U and V are to be compared. !> If RC = 'C' the columns of U and V are to be compared. !> |
| [in] | MU | !> MU is INTEGER !> The number of rows of U if RC = 'R', and the number of !> columns if RC = 'C'. If MU = 0 CUNT03 does nothing. !> MU must be at least zero. !> |
| [in] | MV | !> MV is INTEGER !> The number of rows of V if RC = 'R', and the number of !> columns if RC = 'C'. If MV = 0 CUNT03 does nothing. !> MV must be at least zero. !> |
| [in] | N | !> N is INTEGER !> If RC = 'R', the number of columns in the matrices U and V, !> and if RC = 'C', the number of rows in U and V. If N = 0 !> CUNT03 does nothing. N must be at least zero. !> |
| [in] | K | !> K is INTEGER !> The number of rows or columns of U and V to compare. !> 0 <= K <= max(MU,MV). !> |
| [in] | U | !> U is COMPLEX array, dimension (LDU,N) !> The first matrix to compare. If RC = 'R', U is MU by N, and !> if RC = 'C', U is N by MU. !> |
| [in] | LDU | !> LDU is INTEGER !> The leading dimension of U. If RC = 'R', LDU >= max(1,MU), !> and if RC = 'C', LDU >= max(1,N). !> |
| [in] | V | !> V is COMPLEX array, dimension (LDV,N) !> The second matrix to compare. If RC = 'R', V is MV by N, and !> if RC = 'C', V is N by MV. !> |
| [in] | LDV | !> LDV is INTEGER !> The leading dimension of V. If RC = 'R', LDV >= max(1,MV), !> and if RC = 'C', LDV >= max(1,N). !> |
| [out] | WORK | !> WORK is COMPLEX array, dimension (LWORK) !> |
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. For best performance, LWORK !> should be at least N*N if RC = 'C' or M*M if RC = 'R', but !> the tests will be done even if LWORK is 0. !> |
| [out] | RWORK | !> RWORK is REAL array, dimension (max(MV,N)) !> |
| [out] | RESULT | !> RESULT is REAL !> The value computed by the test described above. RESULT is !> limited to 1/ulp to avoid overflow. !> |
| [out] | INFO | !> INFO is INTEGER !> 0 indicates a successful exit !> -k indicates the k-th parameter had an illegal value !> |
Definition at line 160 of file cunt03.f.